PE2- 15080

JR-165523
RESEARCH AND DEVELOPMENT PROGRAM FOR NONLINEAR
STRUCTURAL MODELING WITH ADYVANCED
TIME-TEMPERATURE DEPENDENT
CONSTITUTIYE RELATIONSHIPS
r INAL REPORT
by
KEYIN P. WALKER
UNITED TECHNOLOGIES RESEARCH CENTER
400 MAIM STREET
EAST HARTFORD, COMNECTICUT 06108
Praeparad for
NATICNAL AEROMAUT I CS AMD SPACE ADMINISTRATION
NASA Lewis Research Center
VCﬂb ct NAS3-22055
j(.‘_JASC‘.-'C;—UJS"J) BES5EX3CH A\D D”VELW.L“_LH Hez=-1c08¢
g;ggmg FCR NCJd-LINEAF SIRUCIUSAL MODELING. S '
L?I"L‘J ADVALCED TIdE-TEaRfZXAT Ulu: DLPENDEHT .
CONSTIITUTIVE REL Loycnulrs Final Regcrt ' Jaclas
(United Tecumolcqgiss Fessarch Centarn) 167 p dZ/07 93542

P57 0550

REPRODUCED BY
- NATIONAL TECHNICAL
INFORMATION SERVICE

U.S. DEPARTMENT OF COMMERCE
SPRINGFIELD, VA. 22161

i

[ i






1. Report No. 2. Government Accession No. 3. Recipient’s Catalog No.

NASA  CR-165533 N&Z 160 80

4, Title and Subtitle - 5. Report Date
Research and Development Program For : 25 November 1981

Non~Linear Structural Modeling with
Advanced Time-Temperature Dependent
Constitutive Relationships

6. Performing Organization Code

7. Author(s} 8. Performing Organization Report No.
Dr. Kevin P. Walker PWA-5700-50

10. Work Unit No.

9. Performing Organization Name and Address

United Technologies Research Center 11 Contract or Grant No
400 Main Street ’ '
East Hartford, Conn. 06108 NAS3-22055

13. Type of Report and Period Covered

12. Sponsoring Agency Name and Address c t Final R t
. a epor
NASA/Lewis Research Center ontractor "ina po

21000 Brookpark Road 14. Sponsoring Agency Code
Cleveland, Ohio 44135

16. Supplementary Notes
Project Manager: R. E. Kielb, Mail Stop 49-6
National Aeronautics and Space Administration
Lewis Research Center, 21000 Brookpark Road,
Cleveland, Ohio 44135

16. Abstract

This report presents the results of a 20-month research and development program for

* nonlinear structural modeling with advanced time-temperature constitutive relationships.
This program was conducted by Pratt & Whitney Aircraft and the United Technologies
Research Center for the NASA-Lewis Research Center under Contract NAS3-22055. The
program included: (1) the evaluation of a number of vicoplastic constitutive models
in the published literature; (2) incorporation of three of the most appropriate
constitutive models into the MARC nonlinear finite element program; (3) calibration
of the three constitutive models against experimental data using Hastelloy-X material ;
and (4) application of the most appropriate constitutive model to a three dimensional
finite element analysis of a cylindrical combustor liner louver test specimen to
establish the capability of the viscoplastic model to predict component structural
response.

17. Key Words (Suggested by Author(s)) 18. Distribution Statement

Gas Turbine Engines, Creep,
Plasticity, Visco-Plasticity, Unlimited, Unclassified
Constitutive Relationships,

Thermovisco-Plasticity, Inelastic

19. Security Classif. {of this report} 20. Security Classif, (of this page) 21. No. of Pages 22. Price”

Unclassified Unclassified 187

* For sale by the National Technical Information Service, Springfield, Virginia 22161
—i-
NASA-C-168 (Rev. 10-75)






3
=
wn
~

RFPRPwoe~NOoOUL & WNH

,_l

o

W W wwwwwwwwwew

.

=3
>
v
~

Research and Development Program for Nonlinear

Structural Modeling with Advanced
Time~Temperature Dependent
Constitutive Relationships

TABLE OF CONTENTS

L.O SUMMARY & v v 4 6 v vt v v e v e e e e e e e e e e e e e

2,0 INTRODUCTION & v v & v 4 v v o o v o o v o o o v o o o oW
Program Need . « o ¢ ¢ ¢ 4 ¢ v o o o ¢ « o o o o o+ o &
Program Objective . . v & & ¢ v o ¢ ¢ o v ¢« s o s 0
Program RElevance .« « + o « « o o o o o o o o o o o .
Background . . . « v . 4 v u v v e e e e e e e e e e
Scope Of Program « « « o o 4 ¢ o o ¢ o o o 4 4 o0 s e
I - TIME-DEPENDENT CYCLIC PLASTICITY MODEL SELECTION .
Constitutive Theory Review . . + « v + v «v v ¢ o« o + &
Walker's Functional Theory . « « « o v « o v o o o o .
Chaboche's Theory .+ « « v v« v o ¢ o o o ¢« o v o o o &
Miller's ThEOTY '« &« ¢ o o o o o o o o o o o o o o o &
Lee & Zaverl's Theory . « v ¢ v v v ¢« v o o o o o o &
Bodner, Partom & Stouffer's Theory . . . . « « « + « &
Krieg, Swearengen & Rohde's Theory . . . « « « « « . .
Cernocky & Krempl's Theory « « o v v v « o o o o « « .
Hart's ThEOTY v ¢ ¢ v v o o o o o o o o o o o o o &
Valanis' Endochronic Theory « o« « o o « « o « o « &
Laflen & Stouffer's Theory + « « v v v « ¢ o o + o o &
IT — CONSTITUTIVE TESTING .« & & ¢ « o o o o o o s o
Chocie of Material . . . . ¢« ¢ v v & o v o o o « &+ o &
Choice of Testing Machine . . . . . . « + ¢« +« ¢« « o &
Uniaxial Hysteresis TestsS . « « + o ¢ & o o o o o o &
Creep and Relaxation TeStsS + « « o o, v o o o o o o o
Thermomechanical TeSt .+ v ¢« o« & ¢ « + o o « o o & «
Combustor Liner Rig Test « v v v o ¢ o & o & « o o o &

-ij-

15
16
18
21
21
22
22
23
24
24

25

25
25
25
27
28
30



TABLE OF CONTENTS (Cont'd)

Page
5.0 TASK III ~ INCORPORATION OF CONSTITUTIVE THEORIES INTO
NONLINEAR FINITE ELEMENT CODE . . . & ¢ v v ¢ 4 v v v v 0 o o« o o 33
5.1 Description of the MARC Program. . . « « « &« o o o o« « o o « =« 33
5.2 TImplementation of Functional Theory in MARC. . . . . . . . . . 37
5.3 Notes on Subroutine HYPELA . . . + & ¢ ¢ « « 4 & & « o o « o« & 39
5.4 Input Data Required by MARC. +« « © v ¢ v v v 4 o v o« o« o o o« « 43

6.0 TASK IV - COMPARISON AND EVALUATION OF CONSTITUTIVE THEORIES. . . . 45

6.1 Determination of Material ConstantS. . . . + o & o o o« o o o 45
6.2 Strain Rate Behavior .« « v v v ¢ v v ¢« o o o o o v « o v v o 49
6.3 Creep and Relaxation Behavior. . . . . . « + v v v « v « v « . 50
6.4 Thermomechanical Behavior. . .« & ¢ v v ¢ v v v o v o « o o o & 51
6.5 Combustor Liner Rig Amalysis . . . . + « v ¢ v v v v ¢ v o o« & 54
7.0 DISCUSSION OF RESULTS AND CONCLUSIONS . v v v v 4 & o v v o o « o & 56
8.0 RECOMMENDATIONS &+ v v v ¢ ¢ & v o o 4 o o o e s e e e e e e e e e 58

9.0  REFERENCES. &+ v v 4 v v v 4 4 v v v e v v e e e e e e e e e e e 59

FIGURES. ¢ . & v v v vt v v o v v e e e e e e e e e e e e e e e e e e 62

APPENDICES . .« v v v v v v vt e v e e e e e e e e e e e e e e e e 133

RELR



FOREWORD

The work described in this report was performed by the United Technologies
Research Center and by Pratt and Whitney Aircraft Group, Commercial Products
Division, for the NASA-Lewis Research Center under Contract NAS3-22055. The program
manager and principal investigator was Dr. Kevin P. Walker. The NASA-Lewis tech-
nical project manager was Dr. Robert Kielb.
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Research and Development Program for Nonlinear
Structural Modeling with Advanced
Time-Temperature Dependent
Constitutive Relationships

1.0 SUMMARY

The results of a twenty (20) month technical program, entitled '"Research and
Development Program for Nonlinear Structural Modeling with Advanced Time-Temperature
Constitutive Relationships', are presented. This program was conducted by Pratt
and Whitney Aircraft and the United Technologies Research Center for the NASA-Lewis
Research Center under Contract NAS3-22055. The program included: (1) the evalua-
tion of a number of viscoplastic constitutive models in the published literature;
(2) incorporation of three of the most appropriate constitutive models into the
MARC nonlinear finite element program; (3) calibration of the three constitutive
models against experimental data using Hastelloy-X material; and (4) application of
the most appropriate constitutive model to a three dimensional finite element analy-
sis of a cylindrical combustor liner louver test specimen to establish the capa-
bility of the viscoplastic model to predict component structural response.

Based on a qualitative evaluation in Task I, three viscoplastic constitutive
theories of material behavior, namely: (1) Walker's functional theory; (2) Miller's
theory; and (3) Krieg, Swearengen and Rohde's theory, were chosen for further study
in Task TIV. Evaluations of the three theories were based on a comparison of the
predicted and the experimentally observed constitutive response of Hastelloy-X
material developed in Task II. Each theory was incorporated into a subroutine
of the MARC nonlinear finite element program in Task III. (A listing of the
FORTRAN subroutine delivered to the NASA-Lewis Research Center is given at the end
of the report.) Based on the evaluations in Task IV, Walker's functional theory
was chosen to analyze the structural response of a combustor liner induction rig <
test specimen under temperature and strain cycles comparable to those in actual
engine operation. The MARC subroutine incorporating the functional theory was
delivered to the NASA-Lewis Research Center and installed for use on the UNIVAC 1100
computer.

The three viscoplastic comstitutive theories were incorporated into the MARC
program by means of an initial stress technique. All of the material nonlinearity
in the constitutive equations is incorporated into an initial load vector and ‘
treated as a pseudo body force in the finite element equilibrium equations.

The structural analysis of the combustor liner specimen under complex thermo-
mechanical loading cycles has shown a deficiency in the currently proposed visco-
plastic constitutive theories. These theories use various internal state variables



which employ a hardening-recovery format to determine their growth. The growth

of the internal state variables due to hardening takes place only in the presence

of inelastic deformation, while the recovery of the internal state variables can
take place in the absence of inelastic deformation. Because internal state variable
growth due to hardening can only take place in the presence of inelastic deformation,
no change in the state variables (other than recovery or annealing) can take place
during the elastic unloading phases of a thermomechanical cycle. Experimental evi-
dence suggests that the state variables can change with temperature variations
during the elastic unloading phase of a thermomechanical cycle.



2.0 INTRODUCTION

2.1 Program Need

The overall operating cost of the modern gas turbine engine is greatly
influenced by the durability of combustor and turbine structural components while
operating at high temperatures. During each flight cycle, these components undergo
large thermally induced stress and strain cycles which include significant amounts
og creep and relaxation. Requirements for higher turbine inlet temperatures, uni-
formity of temperature profiles, increased turbine cooling, and reduced emission
levels have increased heat and pressure loads on combustor liners, while limiting
the amount of air available for cooling the liners. Creep/fatigue cracking and
creep buckling distortion of combustor liners reduces turbine durability through
higher temperatures, and through impact and erosion damage caused by liberated
pieces of the liner and hard carbon particles.

2.2 Program Objectives

The current program addresses a critical issue in the development of advanced
life prediction technologies — the need to develop advanced viscoplastic constitu-
tive relationships and the evaluate their effectiveness in predicting the cyclic
stress—strain history at critical fatigue locations in major hot section components.

In order to meet the objectives of the current program, the advanced consti-
tutive models have been specifically calibrated against Hastelloy-X material which
is used in the construction of combustor liners. But the constitutive models
themselves, and the methods developed to evaluate the material constants required
to support the models, are generally applicable to other materials. 1In addition,
the modular form of the computer routines developed in the program should allow
their incorporation, with necessary changes, into any nonlinear structural analysis
finite element program.

2.3 Program Relevance

The current program provides an improved structural analysis capability and
forms a sound base for future improvements in mission life analysis programs. With
such screening tools available it will be possible to ensure that only promising
new candidate schemes are put into hardware without waiting for one or two years of
field operation to provide a feedback to the design scheme.

Improvements in hot section component durability will have a profound impact on
the operating costs of high bypass ratio turbofan engines through reduced maintenance
cost. Equally important is the need to achieve reduced emissions levels and fuel



consumption while maintaining the durability of hot section components. The
achievement of advancements in hot section component durability technology will
directly support the maintenance of U.S. leadership in the aircraft gas turbine
engine industry.

2.4 Background

The overall operating cost of the modern gas turbine engine is significantly !
affected by the durability and efficiency of the major hot section components, the
combustor and turbine. Primary responsibilities of the combustor are gas tempera-
ture level and pattern control, required for efficient turbine operation, and ex-
haust emission control at the various flight operating conditions. These goals
are accomplished by the precise metering of air throughout the combustor structure.
The high pressure and high combustion gas temperature characteristics of this
environment require that the combustor liner be cooled for durability.

These requirements for control of exit gas temperature, emissions, and metal
temperature generate an intense competition for utilization of combustor airflow.
The more aggressive performance, efficiency, and emission goals set for future en-
gines emphasize the need for development of durable combustor structures which can
operate with reduced levels of cooling air. This requires detailed knowledge of the
operating environment and the ability to accurately predict structural response for
these loadings. '

At high operating temperatures, the time dependence of the inelastic behavior
of the structural material is a significant consideration in the design and analysis
of combustor liners. Currently, most combustor liners are constructed of sheet
metal louvers which rely on convective film cooling. Details of a louver geometry
are shoyn in Fig. 1 where the individually formed pieces are seam welded together
in the fabrication of the louver liner. Cooling of each individual louver is
accomplished by compressor discharge air, introduced into the chamber created by
the louver 1lip and knuckle region to generate an insulating f£ilm of cooling air on
the downstream panel. Degradation of the cooling film, as it moves along the panel,
results in increased metal temperature in the seam weld and louver lip regions. The
thermal gradient between these regions and the knuckle of the next louver is a
function of the engine operating condition. Figure 1 indicates the typical knuckle
location (B) which is generally cooler than the typical louver lip location (A).

The temperature difference between these two locations creates thermal stresses in
the combustor liner. At the maximum power point, the thermally induced stress and
strain state at the louver lip has significant amounts of plasticity which, when
repeated over subsequent engine flight cycles, results in creep/fatigue failure of
the liner. 1In large diameter annular combustor liners, fatigue cracks initiate in
the louver lip region and grow axially toward the seam weld. Continued growth can
result in distortion of the local cooling air stream, resulting in over-heating and
burning of the liner and serious damage to the turbine components. Typical liner
failures of this type are shown in Fig. 2. Analytical modeling and life prediction



of this kind of structural response has been hampered by lack of well-calibrated
temperature data, high temperature cyclic material information, and precise engine
failure data. With the advent of improved thermal and structural analysis capa-
bilities and the development of test facilities to provide well-controlled component
failure data, new structural modeling strategies and life prediction systems can be
proposed and calibrated for the development of improved combustor liner structufes.
With such analytical screening tools available, it will be possible to ensure that
only promising new candidate schemes are put into hardware without waiting for omne
or two years of field operation to provide feedback to the design scheme.
t

Life prediction of combustor liners requires a thorough knowledge of the thermal
environment, accurate material characterization, general capability stress analysis
techniques, calibrated failure data, and a life prediction model. The advent of
general purpose finite element programs has provided a capability for detailed
modeling of engine hot section components where the component structural response
is dominated by significant amounts of nonlinear material behavior. However, the
structural analysis of such components is usually carried out in nonlinear finite
element programs, such as MARC (Ref. 1), which possess a degree of programming
sophistication far in advance of their constitutive material modeling capability.

Most nonlinear finite element programs, in keeping with an accepted practice
in the elevated-temperature design community, partition nonlinear elevated-tempera-
ture material behavior into rate-dependent '"creep'" and rate-independent '"plasticity"
components. Each component is assumed to obey a separate constitutive law in which
the rate-dependent creep strain is assumed to be independent of the time-independent
plastic strain and the/plastic strain is assumed to be independent of the creep
strain. No provision for interaction between creep and plastic behavior is present
in the constitutive equations. These theories are therefore of questionable value
at high temperatures where such interactions are known to occur.

;In addition to the inability to model the interaction between creep and
plasticity, most of the classical plasticity theories suffer from an inability to
accurately model material behavior under cyclic load conditions. Under such
loading conditions the classical theories are unable to predict the strain harden-
ing/softening characteristics of the material. These limitations in constitutive
modeling behavior have recently been discussed at a number of symposia (Refs. 2-6)
and also in some depth by Krempl (Ref. 7).

Since« the constitutive material model lies at the heart of all general purpose
nonlinear finite element codes, including the MARC program, it is clear that the
development and efficient implementation of new viscoplastic constitutive models
into such programs is needed before the full potential of such codes can be fully
utilized for advanced high temperature component structural analysis.



State~of-the-art finite element methodology and life prediction algorithms
have been evaluated against failure data from a combustor liner induction rig test
specimen under contract NAS3-21836 (Ref. 8), with the NASA-Lewis Research Center.
The work described in the present report provides an enhanced ability to assess the
degree of cyclic nonlinear structural behavior generally associated with thermos
mechanical fatigue damage. A flow chart indicating where better material modeling
capability fits into an improved life prediction scheme is shown in Fig. 3.

2.5 Scope of Program
A twenty (20) month program was conducted to develop and evaluate a number of
time-dependent constitutive theories suitable for the structural analysis of com-
ponents which operate at elevated temperature. The work effort was organized into

the following tasks.

Task 1 - Constitutive Model Selection

Ten viscoplastic constitutive models, available in the published literature,
were examined to assess their potential capabilities and limitations in representing
the thermomechanical response experienced by components (such as a combustor liner)
which operate in a cyclic elevated temperature environment. Based on this examina-
tion, three (3) theories were selected for further evaluation and incorporation
into the MARC nonlinear finite element program.

,

Task 2 — Materials Testing

Specimen tests were conducted using a representative combustor liner material,
Hastelloy-X, to determine the required temperature dependent material constants and
to evaluate each of the three selected constitutive theories. These tests utilized
smootﬁ, uniaxial bar specimens of Hastelloy-X together with a closed loop servo-
hydraulic INSTRON testing machine. The following tests were performed on the uni-
axial bar specimens:

(a) Fully reversed cyclic stress-strain tests for a range of strain rates and
temperatures consistent with the operating conditions of a representative
combustor;

(b) Creep tests at various stress levels and temperatures starting from various
points on steady-state hysteresis loops executed at constant strain rate
under fully reversed strain controlled conditions;

(c) Stress relaxation tests at various temperatures starting from zero initial
strain values on steady state hysteresis loops executed at various strain
rates under fully reversed strain controlled conditions.



Tests (a), (b), and (c) were used to determine the material constants for each of
the constitutive theories at temperatures ranging from 427°C to 982°C (800°F to
1800°F).

A "faithful cycle" thermomechanical test having a prescribed strain-tempera-
ture history appropriate to that of a critical combustor liner fatigue location
(location A at the louver lip in Fig. 1) provided an experimental thermomechanical
hysteresis loop for evaluation of the constitutive theories under complex loading
cycles involving large changes in temperature and strain rate.

Task 3 - Incorporation of Theories into Finite Element Program

Each of the three theories was incorporated into a FORTRAN user subroutine of
the MARC nonlinear finite element program. An initial stress technique was used
in which the incremental constitutive relationship used in evaluating the incremental
initial load vector was determined by a subincrement method. An integral recursion
relation was developed for Walker's functional theory which has proved to be stable
and accurate, even for large incremental time/load steps. Miller's theory and the
theory of Krieg, Swearengen and Rohde have been formulated as integral theories,
but have not, as yet, been incorporated in integral form into the MARC program.
These theories have been integrated over each subincrement by means of an explicit
Euler forward difference method.

Task 4 — Comparison and Evaluation of Candidate Theories

.

The three candidate constitutive theories were evaluated by comparing the pre-
dicted uniaxial response of Hastelloy-X material with the experimental results
generated in Task 2. Based on these evaluations the functional theory was selected
to analyze the structural behavior of a simulated combustion chamber outerliner.

The FORTRAN subroutines for both the differential and integral forms of the func-
tional theory were then delivered to the NASA-Lewis Research Center and installed

in the MARC program for use on the UNIVAC 1100 computer. Two demonstration problems
were then executed to ensure correct functioning of the computer program at the
NASA-Lewis Research Center.






3.0 TASK I - TIME-DEPENDENT CYCLIC
PLASTICITY MODEL SELECTION

3.1 Constitutive Theory Review

Ten isotropic viscoplastic theories, listed in Appendices 1-12, were examined
in order to assess their potential capabilities and limitations in representing the
thermomechanical structural response experienced by a jet engine combustor liner.
In order to obtain commonality in the theories, the equilibrium (rest or back)

stress has been denoted by Qij’ the drag stress by K, and the inelastic strain by
Coeaso §

1]

In the isotropic theories selected for further evaluation, it is assumed that
the inelastic response of the material is incompressible with ¢y = 0. The formu-
lation of the theories then implies that: (a) the response to a hydrostatic loading
is linearly elastic, and (b) that the shear response of the material can be deter-
mined from its uniaxial response. The inelastic incompressibility assumption can
easily be relaxed if future testing shows that the multiaxial response cannot be
determined from uniaxial behavior. From the limited amount of available experimental
data, it would appear (Ref. 9) that the incompressibility assumption for the inelastic
response is not satisfied.

Some brief remarks on unified viscoplastic constitutive equations in general
will now be given before proceeding to review each theory.

All of the theories listed in the Appendices, with the exception of Valanis'
theory (Appendix 12) and the theory of Bodner, Partom and Stouffer (Appendix 7),
allow the expression for the inelastic strain rate under monotonic loading conditions
to be written in the form

, . — -0
¢=¢ - = f '(-U—K—) (3.1)

where f“l is a function of the argument ((0-Q)/K) which differs amongst the theories
and whose inverse is denoted by the function f, so that ff71 = 1. Under rapid
loading conditions the derivative terms in Eq. (3.1) become paramount and the
response of the material aprpoximates to & = Ef. The viscoplastic formulations
therefore exhibit an elastic response under infinitely fast loading conditions.

An inelastic response under infinitely fast loading conditions could be incorporated
into the theories by replacing Eq. (3.1) with

.’é‘~d—=f—'(°'—;‘g), (3.2)



in which o = £ is the instantaneous inelastic stress-strain response. A suitable

growth law for Z would then be required.

Under monotonic loading conditions the tangent modulus of metals is much smaller
than the elastic modulus, so that for large strain values G/E << ¢, and the asymptotic

stress—-strain relation in Eq. (3.1) may be written as
\4‘

a~—[Q+Kf(e)JGs €—~+ . (3.3)

Cyclic hardening of the hysteresis loops can be accommodated by allowing the
equilibrium stress @ and the drag stress K to increase with an increase in the cumu-
lative inelastic strain incurred by the material under cyclic loading conditions.

Two repositories exist for incorporating cyclic hardening into the viscoplastic
theories. First, consider the case where the equilibrium stress § rapidly saturates
to a limiting value at large strains, so that Q has reached a constant value at the
tip of the first cyclic hysteresis loop reversal. Cyclic hardening can be incor-
porated into the theories by assuming that the drag stress K increases with cumula-
tive inelastic strain under cyclic loading conditions. If the material exhibits a
positive strain rate sensitivity the cyclic stress amplitude increases with strain
rate under strain-controlled conditions and the term Kf(¢) increases with increasing
values of €. At elevated temperatures and high strain rates the term Kf () in
Eq. (3.3) may be the dominant term at the tips of the hysteresis loops. Under such
conditions the hysteresis peak stresses may be approximated by the expression
ox *+ KE(E). If the draé stress increases from an initial value of K; to a final
saturated value of Kp under sustained cycling, the fractional increase in stress
amplitude, viz. IOF—OII/‘OI|where op = Kpf(€) and op = KIf(é), is independent of
strain rate. The same relative amount of cyclic hardening is observed at all strain
rates when the strain rate is large. Hardening of the drag stress K which is a
scalar quantity, with cumulative deformation, introduces isotropic hardening into
the viscoplastic formulation. At high strain rates the original stress amplitude
t{op = KIf(é)} increases equally in both the compressive and tensile directions
to a final saturated value of *{op = K f(e)} An example of this type of isotropic
hardening is shown in Fig. 4.

Another type of cyclic hardening can be incorporated into the viscoplastic
theories by assuming that the drag stress rapidly saturates to a limiting value at
large strains (or remains constant). Cyclic hardening is then assumed to occur due
to increases in the value of the equilibrium stress tensor 8+ at the peaks of the
hysteresis loops due to sustained cyclic loading. At the hysteresis loop peaks the
term Kf (&) is now constant for a given rate of straining and the stress amplitude
increases due to increases in the magnitude of Q. This type of kinematic hardening
produces a response quite different to that produced with an isotropic hardening



mechanism. Since the hardening occurs in the equilibrium stress §, the relative
amount of observed cyclic hardening will decrease with increasing strain rate. At
sufficiently high strain rates where the term Kf(¢) in Eq. (3.3) is paramount,
virtually no cyclic hardening in the stress amplitude will be apparent. Kinematic
hardening of the equilibrium stress produces the type of hardening observed in *
Fig. 5. 1In this figure, the peak stress amplitude increases with cycle number
while the "yield stress" decreases with cycle number. This results in a plastic
tangent modulus which increases with cycle number. An explanation of this effect
can be obtained from an examination of Eq. (3.1). The production of an observable
value of the inelastic strain rate, ¢, depends on the magnitude of the stress
difference o-Q. As the magnitude of Q increases at the hysteresis peaks due to
cyclic hardening, the magnitude of stress ¢ required to produce "yielding", or

an observable value of ¢ in the reverse direction, decreases. 1In general, it is
appropriate to incorporate both forms of cyclic hardening into the constitutive
formulation. The hardening/softening mechanisms adopted by the unified viscoplastic
theories are displayed in Table 1.

In addition to differences in the functional form adopted for the growth of
the inelastic strain rate with the state variables @ and K in Eq. (3.1), the visco-
plastic theories also differ in the functional form assumed for the growth laws
which determine the evolution of the state variables @ and K. These state variables
are assumed to evolve according to differential constitutive equations which exhibit
a hardening/recovery format. At large strain values these state variables saturate
to limiting functional forms which, in the theories of Walker, Chaboche and Lee &
Zaverl, are independent of strain rate at high rates of strain. 1In the remaining
state variable theories the limiting functional forms of @ and K depend on the
strain rate even at high rates of strain.

Saturation of the equilibrium stress and drag stress state variables is
achieved when the antagonistic effects of hardening and recovery cancel each other

in the state variable evolution equations. 1If these equations are written in the
form

Q=fie-fpalcl-f,10l (3.4)
and
K=fylel-f Klel-fgK (3.5)

where fl’ f2, ...f6 are functions of Q and K, and ¢ is the inelastic strain rate,
then the limiting saturation values are achieved when the growth rates of @ and K
become small. One may therefore set @ = 0 and K = 0 to obtain the limiting forms
of Q and K as

10



TABLE 1

MECHANISM FOR CYCLIC HARDENING/SOFTENING IN THE
UNIFIED VISCOPLASTIC THEORIES

Hardening/Softening* Hardening/Softening Hardening/Softhing No Hardenin /
due~to both § and K due to K due to { softening
Walker Miller Cernocky and Krempl | Krieg,
Chaboche Swearengen &
Lee & Zaverl Rohde

*

Hardening/softening of the 9 and K state variables implies a combination of
cycle dependent kinematic hardening with an isotropic hardening component

k%
Hardening/softening of the K state variable implies a combination of ideal
kinematic hardening with an isotropic hardening component

Kk
Hardening/softening of the { state variable implies cycle dependent kinematic
hardening with no isotropic component

kkkk

No hardening/softening of the state variables implies ideal kinematic hardening

11




f,c
FolCl+5101/0

Q:

and ) (3.6)
f4|C| ‘
f5|C|+f6
These limiting forms depend on the strain rate at low rates of strain.

At high rates of strain f2|é| >> f3|Q[/Q and f5l6| >> f6. The state variables
then achieve the rate independent forms

Q=i{f|(ﬂ.K)/f2(Q,K)} (3.7)

and

K={f4(Q,K)/f5(.Q..K)}‘ (3.8)

The terms fZQiél and szlél in Eqs. (3.4) and (3.5) which are responsible for these
rate independent limits may be called dynamic recovery terms, since they are acti-
vated only in the presence of an inelastic strain rate. The terms f3|Q| and f¢K

in Egqs. (3.4) and (3.5) represent the effects of static thermal recovery and are
activated even in the absence of an inelastic strain rate. If the dynamic recovery
terms are absent the limiting values of the state variables may be written in the
rate dependent forms

a=cff(a, K /50,0 (3.9)
and
K=1E{£5(2,K) /(0. K0} - (3.10)

The limiting state variable behavior of some of the viscoplastic formulations is
listed in Table 2. 1t should be emphasized that although some formulations exhibit
a rate independent state variable behavior at high strain rates, the viscoplastic
theories still exhibit a rate dependent stress-strain response through the presence
of the function f(¢) in Eq. (3.3).
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TABLE 2

LIMITING BEHAVIOR OF STATE VARIABLES AT LARGE STRAIN RATE

Q

K

z
(see Appendix 7)

*
(0]

(see Appendix 11

Walkeg
Chaboche
Miller

Lee &
Zaverl

Bodner &
Partom

Krieg,
Swearengen

& Rohde

Cernocky &
Krempl

Hart

Rate Independent
Rate Independent

Rate Dependent

Rate Independent

Not used

Rate Dependent

Rate Independent

Rate Dependent

Rate Independent
Rate Independent

Rate Dependent

Rate Independent

Rate Dependent

Rate Independent

Not Used

Rate Independent
If No recovery in z

Rate Dependent
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The behavior of the viscoplastic theories under creep and relaxation conditions
is governed by the growth of the state variables. Figure 6 shows the steady state
stress—strain hysteresis loop GJAHCFIG executed at a constant strain rate magnitude
under fully reversed strain controlled conditions, while the equilibrium curve is
shown as the "S" shaped hysteresis loop DEF. 1If, under steady state cycling, the
stress is held constant at point A on the hysteresis loop the material will creep
along the line ABC at constant stress. Initially, when the stress is held constant
at point A, the equilibrium stress Q is determined by the stress value at point D.
As the material creeps along ABC the equilibrium stress grows along the curve DEF
according to the growth laws for Q in the Appendices. The difference between the
actual stress and the equilibrium stress decreases to a constant value during creep.
Since the creep rate depends on this difference, the creep rate also decreases
(primary creep) and then remains constant (secondary creep). If the initial stress
is large enough, so that the initial value of the equilibrium stress is at its sat-
uration value, then the difference o-2 will remain constant in the creep test and
secondary creep will occur without a primary transient. 1In the case where creep
initiates at point J in Fig. 6, where the stress lies below the peak of the equili-
brium stress-strain curve, no secondary creep takes place and creep terminates at
point D on the equilibrium stress-strain curve.

If the stress is held constant at point C on the unloading branch of the
hysteresis loop, the initial value of 0-Q = CF is small, and very little creep
is observed initially. At elevated temperature the equilibrium stress § will
gradually decrease due to static thermal recovery (if included in the constitutive
formulation), so that the creep rate gradually increases due to the increase in
0-Q. Eventually, the decrease in the equilibrium stress is halted when the harden-
ing of @, governed by the fq term in Eq. (3.4), balances the recovery terms con-
taining f2 and f3. Secondary creep then takes place at the point C. The creep
behavior on the unloading branch of the hysteresis loop may be contrasted with the
creep, behavior, at the same stress level, on the loading branch of the hysteresis
loop. Here, the initial value of o-f is large, and a rapid primary transient in
the creep curve is observed. This difference in creep response on the loading
and unloading branches of the hysteresis loop is shown in Fig. 7.

The behavior of the constitutive theories in relaxation is analogous to the
creep behavior. Under stress relaxation conditions at constant strain the relaxa-
tion rate depends on the difference ¢-Q so that if stress relaxation commences at
point A in Fig. 6, the amount of relaxation is large. However, if stress relaxa-
tion commences at point C on the unloading branch, very little relaxation is
initially observed. As with the creep behavior, the hesitation in the relaxation
curve observed on the unloading branch of the hysteresis loop eventually gives "
way to more rapid relaxation as the term o0-Q increases due to thermal recovery
(if included) of the equilibrium stress.
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When the initial point at which creep or relaxation commences on the unloading
branch of the hysteresis loop is below the equilibrium curve, at point T in Fig. 6,
the theories predict that the stress will initially relax upwards towards the
equilibrium curve during a stress relaxation test in which the total strain is held
constant, or will creep in the negative direction (contract) at the positive stress
value at point I during a creep test. The negative creep and negative (upward)
relaxation will terminate on the equlibrium curve if the static thermal recovery
containing fq is absent in Egq. (3.4) goveraning the growth of Q. However, if static
thermal recovery is included, the equilibrium stress @ will eventually drop below
the actual stress ¢ at point I during a creep test and, with o~( now being positive,
the material will commence creeping in the positive direction. Similarly, the
upward relaxation will cease when the equilibrium stress drops below the actual
rising stress value and normal (downward) relaxation then ensues., Figure 8 shows
that negative stress relaxation commences in compression at —-21 MPa (-3 ksi) on
the unloading hysteresis branch and progresses through zero to tensile values as
the stress relaxes towards the equilibrium curve.

With the foregoing remarks in mind a review is now given of ten viscoplastic
constitutive theories available in the published literature.

3.2 Walker's Functional Theory

This theory (Ref. 11) was developed in an integral form by modifying the
constitutive relation for z three parameter viscoelastic solid. Both the integral
and the differential forms of the thecry are summarized in Appendices 1 and 2. Two
state variables, Qi' and K, are introduced into the viscoelastic theory to account
for the effects of viscoplasticity. The equilibrium (rest or back) stress Qij
introduces nonlinear kinematic hardening into the model to account for the Bauschinger
effect, while the drag stress K introduces isotropic hardening into the model to
account for cyeclic hardening or softening of the material.

The growth law for the equilibrium stress contains both dynamic recovery and
static thermal recovery terms. At high strain rates the thermal recovery term
becomes insignificant in comparison with the dynamic recovery term and the
equilibrium stress becomes independent of strain rate. In the growth law for the
drag stress, static thermal recovery terms have been omitted, which permits the
drag stress to be written in the integrated form shown in Eq. (3) of Appendix 1.
This form has been found adequate in the modeling of Hastelloy-X behavior, but
future applications may require the inclusion of static thermal recovery in the
drag stress evolution law.

The theory is capable of modeling the cyclic hardening and softening of

hysteresis loops without the use of a yield surface. Material constants required
to model cyclic hardening/softening are obtained from cyclic hysteresis tests so
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that cyclic hardening and softening can be accurately modeled. Both the
equilibrium stress Q and the drag stress K contribute to the cyclic hardening
in the theoretical formulation.

Creep, relaxation and strain rate effects are modeled by a power law (Eq. 1)
of Appendix 2) for the inelastic strain rate. This expression has been found
adequate for the representation of strain rate effects encountered in a combustor
liner material under service conditions where strain rates may vary from 10_6 sec
to 10~ sec_l. However, it appears that modifications are necessary if strain
rates greater than about 10 ¢ sec — are encountered. In particular, at higher
strain rates, the power law expression for the inelastic strain rate predicts values
of stress in a constant strain rate tensile test which are too large (cf. (Refs.

10 and 20)).

-1

The integral expression for the equilibrium stress in Eq. (2) of Appendix 1
contains the material constant n, which appears outside the integral. On differen-
tiation with respect to time this integral expression reduces to the differential
form given in Eq. (2) of Appendix 2. The terms containing @ allow the equilibrium
stress to change during nonisothermal elastic excursions in which the inelastic
strain rate is zero. Reasons for the inclusion of the é terms in the growth law
for the equilibrium stress are discussed in Section 6 of this report.

Calculations may be made with the theory to construct a theoretical yield
surface. For a given point in stress space one may construct a surface surrounding
this point such that in going from the given point to each point on the surface
the cumulative inelastic strain is the same for each point on the surface. If
this theoretical construct is called the yield surface, then the theory allows the
yield surface to translate in stress space by virtue of the presence of the equili-
brium stress (kinematic hardening) and to expand in stress space due to the presence
of the drag stress (isotropic hardening). No provision for a rotation of the yield
surface in stress space exists in the current theoretical formulation. All of the
material constants in this theory are functions of temperature and must be experi-
mentally determined at each temperature of interest.

3.3 Chaboche's Theory

This theory was developed by Chaboche (Refs. 12, 13), and is summarized in
Appendix 3. The theory is similar in form to the preceding functional theory
except that a yield surface concept is used. Inside the yield surface it is assumed
that no inelastic deformation can take place. The use of a yield surface permits
isotropic hardening to be modeled by an increase in the size of the yield surface
rather than by an increase in the drag stress state variable, K. Hence, in this
theory, K is assumed to be constant and the one-dimensional form of the inelastic
strain rate may be written in the form
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e_ & lo-Ql-y-k ::) (c-Q)
CTETE < w® ool (3.11)

where the brackets < > are defined by the relation

ifa
/O|
<a> =

\\aifa>0. (3.12)

Here, the isotropic state variable, Y, together with the yield surface concept,
replaces the drag stresé, K. 1Initially, the variable Y is assumed to be zero and
inelastic deformation occurs only when |0—Ql>k. As Y grows with inelastic deforma-
tion, the yield surface expands and inelastic deformation takes place only when
|o—Q‘>k+Y. At high rates of uniaxial strain and large strain values (where ¢ =~ 0),
Eq. (3.11) takes the approximate form

o Q+Y+k+Ke M (&~ + ) (3.13)

At high strain rates Q and Y become independent of strain rate, so that for very
high strain rates

ox~Ke'". . (3.14)

This éﬁuation shows that at very high strain rates, no cyclic hardening is observed.
Significant hardening will be observed only at lower strain rates when (2 + Y + k)
becomes comparable in magnitude with K € 1/n,

The growth law for the equilibrium stress contains a C) term which allows the
equilibrium stress to change with temperature during nonisothermal elastic excur-
sions. Chaboche's theory, Walker's theory, and Cernocky & Krempl's theory, are
the only viscoplastic formulations which permit such changes in the state variables
to occur.

The yield surface can translate and expand in this formulation, but it cannot

rotate. All of the material constants are functions of temperature and must be
experimentally determined at each temperature of interest.
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3.4 Miller's Theory

This theory (Ref. 14) is summarized in Appendices 4 and 5. Instead of a power
law for the inelastic strain rate, the theory uses a hyperbolic sine function. In
addition, only the material constants K, and 0' are temperature dependent, Ko befhg
the initial value of the drag stress K.

For monotonic one-dimensional loading, Miller's theory may be written in the
form

“ 3
L6 . -a\z{n
C:e——%—=891 smh( O’K )2 ' (3.15)
. ) ' n
a=H,c-H88' {sinh(a @)}, (3.16)
k:Hzlél(C2+Q—A2K3/A;)—H2C288’{sinh(A2K3)}". (3.17)

The equilibrium stress is assumed to harden linearly with inelastic strain.
Only static thermal recovery is included in the growth law for the equilibrium
stress. In the absence of a dynamic recovery term, the equilibrium stress continues
to increase with increasing strain rate; at high strain rates the growth law does
not become independent of strain rate. In modeling the stress-strain behavior of
materials, this theory exhibits the characteristic tri-linear curve in Fig. 9. The
first portion of the tri-linear curve in Fig. 9 corresponds to an "elastic'" loading
phase in which the inelastic strain rate and rate of growth of the equilibrium stress
is small. On entering the inelastic region the equilibrium stress grows linearly
with inelastic strain which gives rise to the second portion of the tri-linear stress-
strain curve. This may be seen by noting that in this region the growth law for Q
(with the neglect of the static thermal recovery term) may be written as
@ =~ Hyc, or since § << E&, as Q = Hie. 1In this region, where the static thermal
recovery term is small, the equilibrium stress increases linearly with strain.
Since ¢ << E&, Eq. (3.15) governing the growth of inelastic strain, may be written
for monotonic loading in the form

o= f € \Wm2/3
o'::.Q,+K{smh (W) } . A (3.18)

Usually, the drag stress K grows slowly with deformation and the rate dependent
term in Eq. (3.18) may be assumed to be constant (for ¢ = constant). The stress
then increases according to the relation o = Hie + constant. Finally, the equili-
brium stress reaches values sufficient to activate the static thermal recovery
term in Eq. (3.16). This term increases very rapidly according to a hyperbolic
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sine law and when it reaches a value equal in magnitude to that of the linear
hardening term, the equilibrium stress reaches a constant saturated value. This
gives rise to the third tri-linear portion of the stress-strain curve in Fig. 9.

The equilibrium stress saturates rapidly with deformation in this theory so ‘
that no provision exists to model cyclic hardening or softening by means of cyclic
changes in the equilibrium stress. Cyclic changes in the stress-strain response
are modeled by cyclic changes in the drag stress. In the evolution equation for
the growth of the drag stress both dynamic recovery terms and static thermal
recovery terms are present. At fast strain rates only the dynamic terms (those
multiplied by Iél) are significant. Now at large strain values the saturated value
of the equilibrium stress { may be determined from Eq. (3.15) by setting Q= 0.
Hence, denoting the saturated value with the subscript s, the saturated equilibrium
stress may be written as

= e\
Qs-frsmh Bg7 (3.19)

from which it is evident that the saturated equilibrium stress increases with strain
rate. From Eq. (3.17), only the first bracket is paramount at fast strain rates.
Within this bracket both @ and K increase with strain rate. When the drag stress
reaches a saturation limit at a given constant strain rate, one may set K = 0, and
by neglecting the constant C, in comparison with @ and K, one obtains at satura-
tion

A
_ 2 3
Qs_—-—AI Kg - (3.20)

,

This relation was derived under the assumption of rapid strain rate. But from the
construction of Egqs. (3.15)-(3.17), the relation may be shown to be valid at all
strain rates. For example, if Eq. (3.20) holds at all strain rates for the saturated
values of Q and K, then setting Eq. (3.17) equal to zero at lower strain rates
where static thermal recovery is important produces the relation

|C|‘=BG’{sinh(A2K2)}n- (3.21)

Moreover, by setting Eq. (3.16) equal to zero, the saturated equilibrium stress is
governed by the relation

¢=86" {sinh (A 2.5)}" (3.22)
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The relation between the saturated equilibrium and drag stresses given in
Eq. (3.20) is now seen to hold at all strain rates by equating equations (3.21) and
(3.22). One further relation between the equilibrium stress, drag stress and actual
stress may be obtained by equating the saturated inelastic strain rates given in
Egs. (3.21) and (3.22) with that given in Eq. (3.15). One obtains ’

o.—8) 2 A
—35 8 :AlﬂsziﬁL'Kg' (3.23)

The assumption is now made that under steady-state creep conditions, the inelastic
strain rate in Eq. (3.15) is governed by the Garofalo equation, viz.,

¢=86'{sinh( Acy)} - (3.24)

Hence, under steady state conditions

-0 % Ay 3 _
B85 A 057 7, KsT Aoy (3.25)
S .

The saturated equilibrium stress is linearly related to the saturated stress while
the saturated back stress depends on the one-third power of the stress. This one-
third power relation for the saturated drag stress, which is derived from the
effect of warm working at various temperatures on the subsequent room-temperature
yield strength of aluminum and 304 stainless steel, was assumed by Miller in
setting up the framework of the viscoplastic theory.

Since cyclic hardening is incorporated into the isotropic drag stress state
variable, hardening may be observed at all strain rates. At high strain rates
the relative amount of cyclic hardening is the same for all strain rates as
emphasized in Section 3.1. »

The state variables @ and K do not contain (j terms so that during nonisothermal
"elastic'" excursions the state variables "stick" at the values they had on entering
the "elastic'" region. Tf a theoretical yield surface is constructed with this
theory, the yield surface can expand and translate in stress space, but no rota-
tion of the surface is permitted.

The material constants n, Hys Hyy Aq, Ay, CZ’ Q* and K of Appendix 4 are
assumed to be independent of temperature. Those which depend on temperature are
the elastic constants A and u; the initial value of the drag stress Ky which
depends on the initial temperature at time t = 0; and the constant 6' defined in
Egqs. (7) and (8) of Appendix 4. '
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3.5 Lee & Zaverl's Theory

This theory (Ref. 15) employs a yield surface, which, in its general anisotropic
form, can expand, translate and rotate. 1In this respect, it is the only theoryd
considered in this report which allows the yield surface to rotate. However,
in the more restricted isotropic form of the theory given in Appendix 6, no yield
surface rotation due to deformation can occur.

Cyclic hardening has been incorporated into the yield stress state variable Y,
the drag stress state variable K, and the equilibrium stress state variable Qij'
Since the inelastic strain rate in Eq. (1) of Appendix 6 depends on these state
variables, it is appropriate to call them primary state variables. These state
variables reach a saturation value at large strains by virtue of dynamic recovery
terms alone, since no static thermal recovery terms are included in the theory.

The dynamic recovery terms, which allow the primary state variables to reach their
saturation values, contain the state variables Oij and Y°. These additional state
variables may be called secondary state variables since they govern the growth of
the primary state variables. Because static thermal recovery terms are absent in
the growth laws for the primary state variables, the saturated values of Y, K and
Qij are independent of strain rate. Moreover, the omission of é)terms in the state
variable growth laws prohibits changes in the state variables during nonisothermal
"elastic" excursions. The theory is more demanding on computer storage requirements
than the preceding theories due to the presence of the secondary state variables.

3.6 Bodner, Partom and Stouffer's Theory

This formulation (Refs. 16-18), which is summarized in Appendix 7, differs
from the other visoplastic theories by rejecting the concept of the equilibrium
stress state variable Qi.. It is not, therefore, possible to describe negative
creep effects at positive stress values, negative relaxation (see the experimental
data in Fig. 8), or an aftereffect type of recovery in the material when the stress
is removed.

The theory is capable of modeling kinematic and isotropic hardening, but
accurate modeling of cyclic effects will probably require the constant q (which is
equal to one for purely isotropic hardening and equal to zero for purely kinematic
hardening) in Appendix 7 to be taken as a function of the plastic work.

Bodner and Stouffer have formulated a general anisotropic theory in Ref. (17),
but only the isotropic form of this theory is shown in Appendix 7. Further comments
concerning a generalization of the anisotropic model by Young may be found in
Ref. (18).

The theory does not contain é terms in the evolution equation for the state
variable z. Consequently, this state variable cannot change during nonisothermal
"elastic" excursions which precludes an accurate analysis of thermomechanical
cycling.
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1f a theoretical yvield surface is constructed from the model the surface can
expand and translate in stress space but no rotation is permitted in an isotropic
material,

3.7 Krieg, Swearengen and Rohde's Theory

This theory uses a power law to model the inelastic strain rate and was
developed in a differential form (Ref. 19) by the authors. Both differential and
integral forms of the theory are presented in Appendices 8 and 9.

An equilibrium stress and back stress are included in the formulation but no
explicit provision exists to model cyclic hardening in either of the state variables.
That is to say, the constants Ay - Ag appearing in the growth laws for the equili-
brium and drag stresses do not explicitly depend on the cumulative inelastic defor-
mation. Cyclic hardening could be modeled by assuming that the constants Ay and
A5 are small in the growth law for the drag stress, so that the drag stress grows
slowly with deformation.

The state variables saturate at large strain values when the static thermal
recovery terms balance the linear strain hardening terms. No dynamic recovery terms
are present in the formulation so that the saturated values of the state variables.
depend on the strain rate. Moreover, the linear hardening terms and the static
thermal recovery terms in the state variable evolution equations produce stress-—
strain curves and hysteresis loops which exhibit the same tri-linear character as
Miller's theory. The rapid final flattening of the stress—strain curve occurs
when the static thermal recovery term grows rapidly with equilibrium stress accord-
ing to the exponential law in Eq. (2) of Appendix 8. The sharpness of the final
transition can be mitigated to some extent by assuming that the constant A3 in
Eq. (2) is very small. 1In this case the static thermal recovery term grows more
slowly according to the fourth power of the equilibrium stress and this produces a
smoother transition in the stress—-strain curve and hysteresis loops.

The theory does not include C) terms in the state variable evolution equations,
so that the state variables cannot change during nonisothermal "elastic'" excursions.
If a theoretical yield surface is constructed from the model the surface can expand
and translate in stress space but no rotation of the surface can occur.

3.8 Cernocky and Krempl's Theory

This theory (Ref. 20) is written in an integral form in Appendix 10. In this
particular form the theory is suitable for monotonic loading; for cyclic loading
the '"constants" Ery o, B, K, 8 and ¢ are updated discontinuously according to a
set of rules. Some of these updating rules are presented in Ref. (21) and the
others are currently under development.
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Both an equilibrium stress Q;. and a drag stress K are utilized in the theory.
The updating of E¢s @ and B in the equilibrium stress and the updating of the drag
stress K with cyclic deformation allows for hardening in both state variables.
Explicit relations are used for the equilibrium stress and the drag stress, so that
only one differential (or integral) equation has to be solved (Eq. (1) in Appendix
10) rather than three. At large strains the state variables saturate to values
which are independent of strain rate. Static thermal recovery terms have not yet
been specified in the theoretical formulation.

Presumably, since the "constants" in the equilibrium stress, and in the drag
stress itself, depend on the current temperature, the model permits the state
variables to change under nonisothermal "elastic" excursions.

A theoretical construction of the yield surface from the model shows that the
surface can both expand and translate in stress space, but cannot rotate.

3.9 Hart's Theory

Hart's theory (Ref. 22) is summarized in Appendix 1l. Two state variables are
employed, one being the equilibrium stress Qij’ and the other a scalar variable,
o%*, called the "hardness" by Hart. The "hardness'", o*, may be called a secondary .
state variable since it serves only to modify the equilibrium stress state variable,
Qij’ at large strain values (or after the imposition of cyclic loading) in the same
manner as the secondary state variables in Lee & Zaverl's constitutive theory

(Appendix 6).

The equilibrium stress grows linearly with inelastic strain in the initial
loading phase and saturates when the static thermal recovery term containing the
"hardness'' state variable balances the linear work hardening term (the interpreta-
tion of the "hardness'" term as being a static thermal recovery term is the author's).
Since dynamic recovery terms are not included in the theoretical formulation, the
saturated value of the equilibrium stress depends on the strain rate. The linear
work hardening growth of the equilibrium stress together with the rapid growth of
the static thermal recovery term at large strain values produces the tri-linear
stress—-strain response characteristic of Miller's theory and Krieg, Swearengen and
Rohde's theory. A demonstration of this tri-linear behavior may be found in
Fig. 6 of Delph's review paper (Ref. 23). Since the drag stress is assumed to be
constant the theory can model only kinematic hardening. Due to the changes in
the "hardness" state variable the saturated equilibrium stress can change with
cumulative deformation during cycling in the manner depicted in Fig. 5. Here the
peaks of the stress-strain hysteresis loop increase in amplitude, the 'yield stress"
decreases in value, and the tangent modulus increases as cycling continues. This
behavior is just noticeable in Fig. 6 of Delph's paper (Ref. 23). It would have
been even more apparent if Delph had increased the strain amplitude in his theo-
retical predictions. The fact that the drag stress is constant implies that iso-
tropic hardening is absent in the theory. Hence, at high strain rates, where the
saturated stress values in the peaks of hysteresis loops have the approximate
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1/n

values, o = + Ke » the hardening is not apparent. The relative amount of

hardening will increase at lower strain rates where the stress has the approximate
form o & £ (0 + Kél/n).

The theory does not include C) terms in the state variable evolution equatiohs,
so that the state variables cannot change during nonisothermal "elastic'" excursions.
If a theoretical yield surface is constructed from the model the surface cannot
expand or rotate in stress-space since only kinematic hardening is permitted.

3.10 Valanis' Endochronic Theory

The endochronic theory (Ref. 24), summarized in Appendix 12, has been used
mainly in a rate-independent form. Strain rate effects with creep-plasticity inter-
action are still being developed by Wu and Chen (Ref. 25) and the rate-dependent
aspect of the theory is still open. In the theory proposed by Wu and Chen (Ref. 25)
different material functions are used in the formulation to describe the behavior
of the material under constant strain rate, creep and relaxation conditions. A
unification of the three material functions into one general function is required
before the theory can be used under arbitrary loading conditions at high temperatures.

3.11 Laflen and Stouffer's Theory

This theory (Ref. 26) has no provision for cyclic hardening or static thermal
recovery. It is therefore not suitable for describing the constitutive behavior
of materials which exhibit significant cyclic hardening/softening. In its integral
form the theory requires the evaluation of the entire integral of the strain history
from the initiation of loading to the current time. For each new choice of the
current time the entire integral must be recomputed (Ref. 28). This will exact
severe economic and time penalties if it is used in a nonlinear finite element
structural analysis code.

Three theories were selected for further evaluation based on the constitutive
review in this section. These are: (a) Walker's functional theory; (b) Miller's
theory; and (c) Krieg, Swearengen and Rohde's theory. However, the remaining
theories are undergoing active development and it may be that in several years it
will be possible to construct a hybrid theory which contains the best elements
from each theory.
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4.0 TASK II - CONSTITUTIVE TESTING

4.1 Choice of Material

Jet engine combustor liners are constructed from Hastelloy-X material. This
material is a fine grained nickel base alloy which has relatively low strength but
high ductility at elevated temperatures. The material constants required by the
viscoplastic constitutive theories must be determined at various temperatures up
to 2000°F (1093°C) in order to predict the structural response of combustor liners
under engine operating conditions.

4.2 Choice of Testing Machine

The tests described in this section were conducted on uniaxial bar specimens
using an INSTRON servo~hydraulic closed~loop testing machine capable of maintaining
load or strain control with the inclusion of hold times. Specimens are maintained
at a given temperature (to within 2°C (4°F)) in an oven heated by resistive elements
which surround the specimen. Temperature control is maintained by a closed-loop
system with thermocouples located at the ends of the cylindrical specimen. ASTM
Class B-1 extensometry is used for the axial strain measurement. Load and total
strain for this system can be controlled to within one percent. At + 0.6 percent
strain amplitude, a strain rate of 3.87 x 10~ sec ~ corresponds to traversing the
hysteresis loop about ten times per minute. Since the temperature of the specimen
is controlled by thermocouples placed at its ends, it is possible that the
dissipation of inelastic work into heat at these strain rates could raise the
temperature at the center of the specimen above that registered by the thermocouples
located at its ends. A computation in Appendix 13 shows that at 982°C (1800°F) the
rise in temperature of the center of the specimen above the temperature at its ends
is only 0.8°C (1.4°F), so that the effects of inelastic dissipation of work into
heat can be neglected in the data reduction of the Hastelloy-X tests.

4.3 Uniaxial Hysteresis Tests

Uniaxial bar specimens of Hastelloy-X (see Fig. 10) were tested at temperatures
of 427°C (800°F), 537°C (1000°F), 648°C (1200°F), 760°C (1400°F), 871°C (1600°F) and
982°C (1800°F).

This material is a fine grained nickel base alloy which has relatively low
strength but high ductility at elevated temperatures. At each temperature the
steady state hysteresis loops were determined under fully reversed strain controlled
conditions. The input strain history consisted of a triangular wave function from
a function generator with a strain amplitude of + 0.6 percent at 760°C (1400°F),
871°C (1600°F), 982°C (1800°F) and a strain amplitude of + 1.0 percent at 427°C
(800°F), 537°C (1000°F) and 648°C (1200°F).
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Hysteresis loops were obtained at strain rates of 1.25 x 10_6, 1.11 % 10_5,
3.70 x 10_5; 3.66 x 1074 and 3.87 x 107> sec”! at each temperature. The material
exhibits hysteresis loops which are asymmetric with respect to the strain axis at
all temperatures, with the material being stronger in compression than in tension,
and with the asymmetry increasing with temperature. However, the hysteresis loops
are symmetric with respect to an axis which lies below the zero stress point. ¢
Experimental results for Hastelloy-X are shown in Figs. 11-16.

At 427°C (800°F) and 537°C (1000°F) an inverse strain rate sensitivity
(Figs. 11 and 12) was observed in which the peak stresses of the hysteresis loops
decreased with increasing strain rate. Apparently, the change from normal to
inverse strain rate sensitivity takes place between 537°C (1000°F) and 648°C
(1200°F). It is observed that as the temperature decreases from 982°C (1800°F)
to 648°C (1200°F) the "yield stress" of the material increases, so that the
hysteresis loops at 648°C (1200°F) show a greater stress amplitude, for a given
strain amplitude, than the hysteresis loops at 760°C (1400°F), 871°C (1600°F)
and 982°C (1800°F). However, the '"yield stress' decreases when the temperature
decreases from 537°C (1000°C) to 427°C (800°F), and the stress amplitude at 537°C
(1000°F) is larger than the stress amplitude at 427°C (800°F) for the + 1 percent
strain amplitude hysteresis loops shown in Figs. 11 and 12.

In their present forms the constitutive theories under consideration cannot
predict the inverse strain rate sensitivity observed in Hastelloy-X at 427°C
(800°F) an 537°C (1000°F). However, since the strain rate sensitivity at these
temperatures is relatively small, the material constants have been chosen to make
the constitutive theories relatively rate insensitive at these temperatures.

Miller (Ref. 26) has included inverse rate sensitivity in a recent version
of his theory by including another state variable to account for the effects of
solute hardening. Effectively, this changes the drag stress of the material,
so that at certain temperatures the drag stress decreases rapidly with increasing
strain rates, and the material exhibits inverse rate sensitivity. In Section 3.1
a constitutive formulation was proposed in which the response to infinitely fast
loading conditions is given by ¢ = E, where £ is the instantaneous stress state
variable whose growth law is prescribed. Inverse rate sensitivity may then be
incorporated into the theory by assuming that the magnitude of E is smaller than
the magnitude of the equilibrium stress Q under monotonic loading conditions at
constant strain rate. Both Miller's method and the method here proposed require
the abandonment of an infinitely fast elastic response in order to predict inverse
rate sensitivity.
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4.4 Creep and Relaxation Tests

Creep tests were performed at each temperature by starting at various points
on a steady state hysteresis loop carried out under fully reversed strain controlled
conditions at a strain rate of 3.66 x 107" sec™! at + 0.6 percent strain amplitude.
At a given point on the hysteresis loop the load was held at a constant value and
the resulting creep behavior was recorded on a strip chart. After each creep
test the material was cycled at a strain rate of 3.66 x 10" sec ~ until the
hysteresis loop stabilized before proceeding to the next creep test. Asymmetry
in the creep response was noted at each temperature, with the material being
stronger in compression than in tension, in conformity with the uniaxial hysteresis
loop results. Figures 17 and 18 show the creep results at 871°C (1600°F) and 982°C
(1800°F), in which the strain at the beginning of each creep test has been normalized
to zero to facilitate comparison with the theoretical predictions.

In a steady state hysteresis loop executed at a constant strain rate, the
equilibrium stress will saturate to a constant value at large strain amplitudes.
This value can be determined from the preceding creep tests by locating the points
on the unloading branches of the hysteresis loop at which the initial creep rate
is zero. It should be emphasized that this point is difficult to define in an
accurate manner due to the fact that the initial creep rate is small over a
considerable portion of the unloading branches. A more accurate determination of
this point can be made by observing the point at which the initial relaxation rate
is zero. However, the function generator on the present experimental equipment
would not allow a strain hold on the unloading portion of the hysteresis loop,
so that the saturated equilibrium stress at a given strain rate and temperature was
determined from the creep results. This saturated value of the equilibrium stress
is used in the determination of the material constants.

Combustor liners are constructed from Hastelloy-X sheet material. In order to
determine if the material constants developed from the Hastelloy-X bar specimens
are appropriate for Hastelloy-X sheet material, creep tests were performed on
Hastelloy-X sheet specimens at 871°C (1600°F) and 982°C (1800°F). The sheet
specimen is shown in Fig. 19. It was initially intended to compare the monotonic
uniaxial tensile response of bar and sheet specimens at these temperatures, but the
small area of the sheet specimens precludes this comparison. During the initial
heat-up of the sheet specimens from room temperature to 871°C (1600°F) and 982°C
(1800°F), it was necessary to keep the sheet specimens under a small tensile load
to make sure that buckling did not occur. At these elevated temperatures the
sheet specimens creep under the small tensile load before the final temperature
is attained. Hence, a comparison of the uniaxial tensile stress-strain response
was abandoned. 1Instead, creep tests were repeated at 871°C (1600°F) and 982°C
(1800°F) to test the variation of secondary creep rates from specimen to specimen.
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The sheet specimens were loaded from zero to full load in three seconds under
load control on a Data-Trak system and allowed to creep at constant load at 871°C
(1600°F) and 982°C (1800°F). Creep tests on the Hastelloy-X bar specimens were
initiated at constant load from various points on a steady state hysteresis loop.
Since the initial conditions in the bar and sheet specimens are different it is
not appropriate to compare the primary creep behavior. However, under conditions ,
of steady state secondary creep the initial conditions are not of concern, and an
examination of steady state secondary creep rates will provide a valid comparison
between bar and sheet creep behavior at 871°C (1600°F) and 982°C (1800°F).

The test results are shown in Tables 3 and 4. In interpreting these results
it should be kept in mind that due to the dependence of the creep rate on the 4th
and 5th powers of the applied stress at 982°C (1800°F) and 871°C (1600°F), viz.
¢ = Ac" where n = 4 or 5, a small error in the stress (load) measurement can cause
large errors in the creep rate. TIf the experiments were turned around and the
saturated stress was measured due to a constant applied strain rate - in a
monotonic tensile test for example - the agreement between theory and test would
improve. Most of the secondary creep rates obtained with the sheet and bar
specimens agree to within a factor of 1.5. ©Exceptions occur in the sheet specimen
at ¢ = 74 MPa (10700 psi) at 982°C (1800°F) and at ¢ = 148 MPa (21500 psi) at
871°C (1600°F). The secondary creep rates in the sheet specimens were obtained
from strip chart records. Variations in secondary creep rates by a factor of 1.5 can
easily be obtained depending on which part of the chart the record is taken from.
This figure provides an indication of the accuracy in reading from one record of
one specimen.

From the creep tests at 871°C (1600°F) and 982°C (1800°F) one can say that
the material constants determined from Hastelloy-X bar specimens are suitable
for representing the constitutive behavior of Hastelloy-X sheet material. This
is based on the experimental agreement in strain rates at a given stress level
obtained in creep and hysteresis testing.

Relaxation behavior at 871°C (1600°F) and 982°C (1800°F) was determined by
holding the strain at a zero value on the compressive portions of the steady state
hysteresis loops carried out at 3.87 x 10_3, 3.66 x 10—4, and 3.70 x 107> sec_l with
a strain amplitude of + 0.6 percent. Representative results obtained at 982°C
(1800°F) are shown in Figs. 20 - 22,

4.5 Thermomechanical Test
Work performed under Contract NAS3-21836 with the NASA-Lewis Research Center
on a simulated combustor liner rig has shown that after about one thousand (1000)

operation cycles (Ref. 8) fatigue cracks initiate at the louver lip (point A in
Fig. 1) and propagate axially towards the seam weld (point C in Fig. 1). In order
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to predict the number of cycles to crack initiation the life prediction algorithms
require a knowledge of the stress-strain hysteresis behavior at the fatigue critical
location at point A. Since strain gages will not operate cyclically at 982°C (1800°F),
the experimental stress-strain hysteresis behavior at point A camnot be measured.
However, the stress field is one dimensional at point A, and consists of a uniaxial
component in the circumferential, or hoop, direction. Moreover, because the !
combustor liner is a thermally driven structure, the total strain at the fatigue
critical location is zero and the mechanical strain history at this point can be
determined from the temperature history ©(f) as gy(t) =Jgt a(g) [30(g) /3] dE.
Thermocouples on the louver 1lip provide the experimental temperature history. Thus, -
both the mechanical strain history and the temperature history at the fatigue k
critical location, where the stress is uniaxial, are known. This temperature vs.
mechanical strain history can then be applied cyclically to a uniaxial cylindrical
tube specimen of Hastelloy-X to determine its stress vs. mechanical strain hysteresis
behavior. Such a test is known as a "faithful cycle'" test because it is meant to
"faithfully'" represent the "true" thermomechanical environment at a critical fatigue
location in a combustor liner.

A thermomechanical test was performed on Hastelloy-X with a standard closed
loop servohydraulic test machine using low frequency (10 kHz) dinduction heating
and compressed air for temperature control on the specimen (Ref. 27). Specimen
temperature measurement provided by a radiation pyrometer, in conjunction with
independently computer controlled preprogrammed mechanical strain and temperature
histories, allow virtually any complex cycle to be applied to the specimen. The
system is capable of cycling at positive or negative mean strain, with either
stress or strain control and hold times within each cycle. The tubular specimen
used in the thermomechanical test is shown in Fig. 23. Axial strain is measured
from the machined internal ridges utilizing a linear variable differential
transformer and a quartz internal extensometer. Load and total strain for this
system can be controlled to within 1 percent and temperature to within 2°C (4°F).

Figure 24 shows the experimental behavior of Hastelloy-X in a thermomechanical
cycle. The temperature history consists of a sine wave with a forty one (41)
second hold period at the maximum temperature of 975°C (1750°F) as shown in
Fig. 25, the lowest temperature in the cycle being 504°C (940°F). The mechanical
strain history is depicted in Fig. 26 and a corresponding cross-plot of the mechanical
strain vs. temperature cycle is shown in Fig. 27. Axial mechanical strain in the
specimen varied between -0.1 percent and -0.445 percent.

It should be noted that in the thermomechanical test the actual input temperature
history consists of a sine wave with a hold period at the maximum temperature point
of the cycle. In the actual liner rig experiment the temperature history, measured
by thermocouples located at the fatigue critical location (see Fig. 68), is not
a sine wave with a hold period. To account for this slight difference in
temperature history the strain rate in the thermomechanical test is adjusted so that
the cross-plot of mechanical strain vs. temperature is the same in the thermo-
mechanical test and in the computations produced by a structural analysis of the
combustor liner rig.
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4.6 Combustor Liner Rig Test

A simulated combustor liner has been tested for fatigue life in a specially
constructed experimental rig. This work was performed under Contract NAS3-21836
with the NASA-Lewis Research Center and is reported in Ref. 8. Cyclic engine
level temperatures and thermal gradients are generated on simulated combustor
liners by a 250 kW, 450 kHz induction heater used in conjunction with controlled
cooling air temperature and flow rate. A schematic drawing of the rig depicting
the principal components is shown in Fig. 28.

Cooling air is supplied to the lower plenum of the rig from a non-vitiated
upstream air heater at temperatures up to 538°C (1000°F). The air in the lower
plenum is then directed through flow straightener plates to the upper flow divider
plate which permits ratioing of the shroud-side airflow to the hot-side airflow.
Shroud-side air provides the total cooling air supplied to the specimen which is
discharged to the hot-side flow annulus, and then, together with the metered hot-
side flow, ejected to ambient temperature.

The specimen is inductively heated by power supplied from a 250 kW, 450 kHz
induction heater. High frequency (450 kHz) was chosen to minimize depth of
penetration of the induced current (heat) in the test specimen to best simulate
the thermal surface loadings (radiative/conductive) experienced by combustor liners
in engine operation.

The induction coil is supported on a framework of glass-bonded mica which is
transparent to the induction field. A 48.3 cm (19 in.) diameter quartz cylinder
(also transparent to the field) is positioned between the coil and the specimen
to form the inner boundary of the hot-side flow annulus. The quartz cylinder is
retained in position by a 45.4 kg (100 1b) quartz cover. A cylindrical test
specimen of Hastelloy-X, which simulates a combustor outer liner and incorporates
five (5) sheet metal louvers, was selected for fatigue testing (Ref. 8). Prior
to testing, the cylindrical louvered test specimen, transition pieces and top
shroud, are assembled as a unit. This provides a permanent instrumentation
installation and facilitates frequent inspection during testing. The assembled
louvered test specimen and cover are shown in Fig. 29a. Fine wire chrome-alumel
thermocouples are used to determine temperature distributions during testing.
Typical thermocouple locations are shown in Fig. 29b.

The test program consisted of a ninety (90) second thermal cycle in which the
rig cooling air was maintained at a constant temperature and flow rate (of 504°C -
2.5 kg/sec (940°F - 5.5 1lb/sec) while cycling power from the induction heater.

A representative transient and steady state temperature distribution measured on

the center (third) louver is shown in Fig. 26. The cycle consists of a twenty (20)
second transient from an isothermal distribution of temperature at 504°C (940°F)

to a maximum temperature distribution, a forty (40) second steady state portion, and
a cool down back to the original isothermal condition.
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During the testing, a maximum circumferential temperature difference of 44°C
(80°F) was recorded at any time point in the cycle. For purposes of thermal
and structural analyses, measurements were averaged to provide a circumferentially
uniform temperature profile.

A comparison of a theoretical transient heat transfer analysis with the .
transient temperature distribution determined by the thermocouples may be found
in Ref. 8. This thermal analysis was used to produce a thermal increment file
for use in the structural analysis of the combustor liner rig specimen described
in Section 6.7. Thermal histories measured by thermocouples on the specimen are
shown in Fig. 30. Note that the thermal increment file used to "drive" the three
dimensional combustor liner analysis corresponds to the actual temperature in the
combustor liner rig and is not a sine wave approximation to the temperature history.
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TABLE 3

Temperature 982°C (1800°F)

Stress (psi) (MPa)

Secondary Creep Rate
(Sec—l) for Sheet Material

Secondary Creep Rate
(sec“l) for Bar Material

28800 199 Spec #1 2.5 x 1072 -
14300 99 Spec #2 9.8 x 107% 9.0 x 1074
10700 74 Spec #3 3.9 x 1074 )
Spec #4 1.1 x 107% 1.0 x 107"
7200 50 Spec #5 1.5 x 107%
Spec #6 8.3 x 1070 9.0 x 107°
TABLE 4

Temperature 871°C (1600°F)

Stress (psi) (MPa)

Secondary Creep Rate
(sec—l) for Sheet Material

Secondary Creep Rate

H“Lsec_l) for Bar Material

21500 148
14200 98
7150 49

Spec #7 6.1 x 10‘2
Spec #8 1.1 x 10

-5
-5

9 1.6 x 10
Spec #10 1.6 x 10

Spec #11 2.2 x 107°
Spec #12 2.4 x 107°

1.3 x 1072

1.4 x 10

1.5 x 1070
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5.0 TASK III - INCORPORATION OF CONSTITUTIVE
THEORIES INTO NONLINEAR FINITE ELEMENT CODE

5.1 Description of The MARC Program
4

The viscoplastic theories of Walker, Miller and Krieg, Swearengen and Rohde
have been incorporated into the MARC general purpose, nonlinear, finite element
program (cf. Ref. 1). This program, in common with other general purpose finite element
programs, has been developed expressly for nonlinear structural analysis. These
programs involve sophisticated computational algorithms and advanced finite ele-
ment formulations, yet rely on constitutive models whose applicability to the hot
section component environment is questionable.

The constitutive theories commonly in use in such finite element programs
artificially partition the total strain into rate-independent plastic and rate-
dependent creep components. These computer programs are then used to approximate
the time-dependent inelastic behavior of a structural component by alternately
applying increments of creep and plasticity. This artificial partitioning of the
total strain into components which are governed by separate constitutive relation-
ships has no underlying physical basis and does not take account of the fact that
creep and plasticity should interact within the constitutive equation.

A number of viscoplastic constitutive theories, in which creep and plasticity
are united, have recently been proposed in the literature and were reviewed in
Section 3.0. Scant experimental data exists to determine the material constants
required by such theories. In addition, such theories comprise a system of "stiff"
differential equations whose lack of stability has been a deterrent to their in-
corporation into large general purpose finite element programs.

In this contract the viscoplastic constitutive theories were incorporated into
the MARC program by means of an initial stress technique. All of the material
nonlinearity in the constitutive equations is incorporated into an initial load vec-
tor and treated as a pseudo body force in the finite element equilibrium equations.
Because the viscoplastic constitutive theories form a "stiff" system of differential
equations, it is necessary to form the incremental constitutive equation appropriate
to the finite element load increment by means of a subincrement technique.

In the subincrement technique the finite element load increment is split into
a number of equal subincrements and the viscoplastic constitutive theories are
integrated over the small subincrements to form an accurate representation of the
incremental constitutive equation over the finite element load increment. Integra-
tion over each subincrement was accomplished by means of an explicit Euler forward
difference method. Provided the subincrements are sufficiently small (so that the
stability level of the forward difference method is not exceeded), the technique
has been found to work efficiently and accurately, even for large finite element
load increments. However, the solution time required for a complete load increment
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in a finite element program is linearly related to the number of subincrements used
in formulating the initial load vector. There is, therefore, a considerable incen-
tive to use as few subincrements as possible, consistent with the stability of the
differential equations comprising the constitutive theory.

A method for reducing the number of subincrements has been developed for the®
functional theory. The constitutive relations for this theory are written in an
integral form and recursion relations have been developed to integrate the equations
over a subincrement in an efficient, accurate and stable manner. Recursion relations
for the constitutive theory are implicit and a Newton-Raphson technique is required
within each subincrement to accurately integrate the constitutive theory over the
subincrement. The integral relations are sufficiently accurate and stable to permit
the use of only one subincrement per finite element load increment. In this case
the functional theory is integrated over an increment equal in size to the finite
element load increment. Inaccuracies may arise from large finite element load in-
crements due to the fact that the strain increment vector Ae; and the temperature
increment A@ are assumed to be constant over the finite element load increment.
Hence the increments must be sufficiently small to enable the input history to be
accurately modelled by piecewise constant values of AP;/At, Ae /At and A®/At, where
APi is the applied incremental load vector. The fact that Asi At is assumed to be
constant over the increment implies that proportional loading occurs over the incre-
ment. Evidently the load increment must be small enough for this to be a wvalid
approximation.

The principle of virtual work may be used to generate the MARC nonlinear
equilibrium equations governing the incremental response of the structure to an
increment of load. In evaluating the nonlinear structural response of a component,
the program assumes that the load history is divided into a number of incrementally
applied load steps. Each load step is sequentially analyzed as a linear matrix
problem using an appropriate stiffness matrix and load vector. Although each load
step uses linear matrix methods to solve the incremental equilibrium equations, the
incremental equilibrium equations themselves are nonlinear since the load vector
will depend on the displacement increment obtained in the solution of the incre-
mental equilibrium equations,

The principle of virtual work may be written, for applied external point loads

Pi, or displacements ug, in the form

zfv 8¢l o dv=8up, , (5.1)

where the integral extends over the volume, V, of each finite element and the sum-
mation sign extends to all the elements in the structure.
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In Eq. (5.1) the virtual displacement vector Su; is related to the virtual
strain vector Gei through the relationship

=R. T: T T
Sq B|18uj or 8€i SUJ- Bijt (5.2)
where Bi' is the strain-displacement matrix and the superscript T denotes trans-
position? Since Su; is an arbitrary virtual displacement vector, Eqs. (5.1) and
(5.2) may be written in the form

Z_/;B?}O'jdVﬂDi‘ (5.3)

This relation expresses the equilibrium of the structure when the applied load
vector is P. and the stress vector is oy If an incremental load APi is applied

to the structure and the stress vector changes to o3 + Aoy, the relation expressing
the equilibrium of the structure at the end of the incremental load application

may be written as

Z‘/;B;(Uj*FAUj)dV:PﬁAPi . (5.4)

Hence, the relation ekpressing the equilibrium of the structure during the applica-
tion of the incremental load vector AP; is obtained from Eqs. (5.3) and (5.4) by
subtraction in the form

Z[BB Aoy dV= AP, - (5.5)

The MARC code allows the user to implement very general constitutive relation-
ships into the program by means of the user subroutine HYPELA. Within this sub-
routine the user must specify the values of the elasticity matrix Dij and the
inelastic stress increment vector Agi in the incremental vector constitutive rela-
tionship

The inelastic stress increment vector Az, is computed in HYPELA from the
viscoplastic constitutive relationships summarized in the Appendices.
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In Eq. (5.6) o denotes the coefficient of thermal expansion and 8§, is the
]
vector Kronecker delta symbol,

0<j<3
(5.7)

//// .
\01f3<,<e. .

For the class of nonlinear visoplastic constitutive relationships under con-
sideration in this contract, the incremental inelastic stress vector Ar; depends
in a highly nonlinear manner on the incremental strain vector Ae;. Since Ae, =
Bij Auj, the incremental inelastic stress vector Ag; depends in a highly nonlinear |
mannher on the nodal displacement vector increment Auj, so that Agi = Agi (Auj).

Substitution of Eq.. (5.6) into (5.5) produces the incremental equilibrium
equations for MARC in the form,

2 duz AR+ R+ T 8] AL, dv+Zfa (8,000 dv (5.8)
where Kij is the elemental elastic stiffness matrix defined by the relation

- T
Kij'/;Bik Dkg By dV. (5.9)

’

The vector AR, is the residual load correction vector or out—of-equilibrium
force vector from the preceding load increment,

which is added to the current increment in order to restore the structure to
equilibrium. The nonlinearity in the incremental equilibrium relationship, de-~
fined in Eq. (5.8), arises because the inelastic stress increment vector Az
depends nonlinearly on the displacement increment vector Auj. Values of D;: and
ch appropriate to the current incremental load step are returned to the main pro-
gram by subroutine HYPELA and the incremental equilibrium relations in Eq. (5.8)
are solved by successive iterations.

The solution of the incremental equilibrium equations in (5.8) is accomplished
within the MARC code by the following algorithm. At the start of the increment
the user subroutine HYPELA is entered to determine the elasticity matrix Dij and
the incremental inelastic stress vector Az, On entry to the subroutine the input
consists of the strain increment vector Ael, the temperature increment A®, the
time increment At over which the incremental external load vector APi is applied
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to the structure, and the values of the stress, strain, temperature and viscoplastic
state variables at the beginning of the increment. Since the incremental strain
vector, Aei = Bi.Auj, can only be accurately determined after the solution to the
incremental equiiibrium relationship in Eq. (5.8) has yielded the correct incremental
solution vector Au,, the strain increment vector Aei initially used to generate the
inelastic stress ifcrement vector AZ, must be estimated. The initial estimate for
Aei is assumed to be the value obtained for Aei in the preceding increment. On exit
from subroutine HYPELA the elasticity matrix D;. and the estimated inelastic stress
increment vector AL, are passed into the main program. After the values of D;. and
Az, are obtained for each integration point in the structure, the incremental equi-
ligrium relationship in Eq. (5.8) is assembled and solved for the incremental node
displacement vector Au,. The incremental strain vector, Aei = Bij Au,, is then com-—
puted and compared with the initial guess for Aei used to generaté the inelastic
incremental stress vector AZ.. If this incremental strain vector is equal, within

a user specified tolerance, to the incremental strain vector used to compute ch

in the assembly phase, the solution is assumed to have converged. Otherwise the
updated strain increment vector, obtained from the solution of the equilibrium re-
lations in Eq. (5.8), is passed into subroutine HYPELA, a new vector, ch, is com-
puted, and the equilibrium equations resolved to yield an improved value of Au; and
Aei. The process is repeated until the value of the vector Aei on the assembly
phase is equal, within a user specified tolerance, to the value of the vector Agy

on the solution phase. After convergence is achieved, the temperature, stress
vector, strain vector and viscoplastic state variables are updated by adding the
incremental values generated during the current increment to the values of these
variables at the beginning of the increment. The program then passes on to the

next load increment where the process is repeated. A flow chart of the iterative
procedure required to implement the viscoplastic constitutive theories into the MARC
program is shown in Fig. 31.

4

5.2 Implementation of Functional Theory in MARC

The recursive integration algorithm for the functional theory described in
Appendices 14 and 15 has been introduced into the MARC code by means of the user
subroutine HYPELA. This routine is called at each integration point in each
element and supplies the elasticity matrix Dij and the ipelastic stress increment
vector Agj to the main program.

The required header cards are:

SUBROUTINE HYPELA(D,G,E,DE,S,TEMP,DTEMP,NGENS,N,NN,KC,MAT,NDI,
1NSHEAR)

DIMENSION D(NGENS,NGENS),G(NGENS),E(NGENS),DE(NGENS),S (NGENS)
DIMENSION TEMP(1),DTEMP(1)

FORTRAN CODING IN APPENDIX 17

RETURN

END
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where

through

through

D(NGENS ,NGENS)

G (NGENS)

E (NGENS)

DE (NGENS)

S(NGENS)

TEMP (1)

TEMP (2)

TEMP (3)

TEMP (4)
TEMP (9)

TEMP (10)
TEMP (15)

TEMP (16)

DTEMP (1)
DTEMP (2)

DTEMP (3)

is the elasticity matrix Di' defined in this
subroutine (output argumenta,

is the inelastic stress increment vector Az,
defined in this subroutine (output argument),

t
is the mechanical strain € - Si‘foa(f)[GO(f)/aﬁ]df
at the beginning of the increment (input argument),

is the increment of mechanical strain Aey - GiuA@
(input argument),

is the stress o; at the beginning of the increment
(input argument),

is the temperature © at the beginning of the
increment (input argument),

is the time t at the beginning of the increment
(input argument),

is the cumulative inelastic strain R at the
beginning of the increment (input argument),

are the values of the inelastic strains, cy
through cg> at the beginning of the increment
(input argument),

are the values of the equilibrium stresses
through 96 at the beginning of the increment
(input argument),

is the drag stress K at the beginning of the
increment (input argument). On exit from the
subroutine TEMP(16) contains the drag stress K
at the end of the increment (output argument),

is the temperature increment A® (input argument),

is the time increment At (input argument),

is the increment of cumulative inelastic strain
AR (output argument),
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DTEMP (4)

are the incremental values of the inelastic

through DTEMP(9) strain Ac; through Acg (output argument),
DTEMP (10) are the incremental values of the equilibrium
through DTEMP(15) stress AQl through AQ6 (output argument),
’

DTEMP (16) is output as zero, since the drag stress K is
updated in TEMP(16),

NGENS is the size of the D,. matrix (NGENS = 3 for plane
stress problems, NGEN% = 4 for plane strain and
axisymmetric problems, NGENS = 6 for three dimen-
sional problems) (input argument),

N is the finite element number (input argument),

NN is the integration point number (input argument),

KC is the layer number in shell or beam problems
(input argument),

MAT is the material identifier (input argument),

NDI is the number of direct stress components (NDL = 2
for plane stress problems, NDI = 3 for plane strain,
axisymmetric and three dimensional problems) (input
argument) ,

NSHEAR is the number of shear components (NSHEAR = 1 for

plane stress, plane strain and axisymmetric problems,
NSHEAR = 3 for three dimensional problems) (input
argument).

5.3 Notes on Subroutine HYPELA

The values of Dij and Agi in the incremental constitutive relation,

Bo;=Dyj(Ae; ~8,a AB) - AL, . (5.11)

are obtained by a subincrement method. Incremental values of the variables
M, At and (Ae, - GiuACD for the current finite element load increment are split
into N equal values, and the constitutive equations are integrated over the N sub-

increments to provide accurate values of Dij and Aci. Because the recursive scheme
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is accurate and stable, even for large load increments, it is possible to use only
one subincrement per MARC increment. Figure 32 shows the MARC finite element pre-
dictions for an axisymmetric problem is which a bar of Hastelloy-X material is
strained at a uniform strain rate in tension. The rounded curve was obtained by
loading to 0.64 percent strain in 64 load increments with one subincrement per MARC
load increment. This corresponds to integrating the recursive algorithm directly
over the same step size as the finite element step size. Each of the curves marked
8, 4, 2 and 1, respectively, was obtained by using only one subincrement per MARC
load increment and loading to 0.64 percent strain in 8, 4, 2 and 1 finite element
load increments, respectively. It is evident that the recursive scheme is stable
and accurate even when loading to 0.64 percent strain directly in only one MARC
increment.,

The accuracy and stability of the integration algorithm will enable large in-
crements to be used in a nonlinear finite element analysis with a concomitant re-
duction in computer run time. Although the recursive integration algorithm is
implicit, requiring Newton-Raphson iterations within each subincrement, the number
of iterations required is not large. In the numerical algorithm the initial guess
for the inelastic strain increment in the first subincrement is taken as the devia-
‘toric mechanical strain increment. If the material is in the elastic region this
is not a good initial guess. However, if the response is elastic, then after two
iterations it is found that the magnitude of the inelastic strain increment will
generally be less than one percent of the mechanical strain increment and the itera-
tions are stopped. If the material is in the inelastic region the initial guess
for the inelastic strain increment is very well approximated by the deviatoric me-
chanical strain increment and one iteration is sufficient to produce an accurate
result. In successive subincrements the initial guess for the inelastic strain
increment is taken from the preceding subincrement. Although the computer time
required to integrate the constitutive relations over one subincrement is longer
than the time required to integrate the same equations by means of an Euler forward
difference method (by about a factor of three or four in general), the recursive
method is stable and accurate even when the constitutive equations are integrated
over a large finite element increment with only one subincrement. Moreover, the
forward difference method has a stability limit, which precludes the use of large
subincrements. Backward difference and implicit integration methods could also be
used to integrate the constitutive equations over a subincrement. Although these
methods are stable they are not as accurate as the recursive integration algorithm.

MARC solves the incremental equilibrium Eq. (5.8) by successive iteratiomn.
To see how the equilibrium equation iterations are converging one can pick the
integration point, NPRIN, in element number, NELPR, at which the maximum amount
of nonlinearity is expected. As subroutine HYPELA is entered on the assembly
phase the routine prints out the strain increment vector Ae; and the stress incre-
ment vector Aci at integration point NPRIN in element number NELPR. After the
equilibrium equations have been solved for the incremental displacement vector Auy,
subroutine HYPELA is again entered with Aey Bl Au, and the incremental vectors
are printed out on the assembly and solutlon phase %f every successive iteration of
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the equilibrium equations. In this way the convergence of the solution to the
incremental equilibrium equations can be followed. 1If no printout of the incre-
mental vectors is required, the variable IPR is set equal to zero in subroutine
HYPELA.

For each subincrement the integral recursive algorithm requires Newton-Raphson
iterations. A test is made within the subroutine to determine if the solution
is in the elastic region. If it is in the elastic region and two Newton-Raphson
iterations have been performed, the iterations are stopped and the subroutine goes
on to the next subincrement. Another test is also made to see if the minimum number .
of iterations is met, or until the tolerance on the magnitude of the inelastic strain’
increment vector,

viz. {IARn - ARn_l|/ARn_l} < 0.01 where n is the iteration number,
is met. If the foregoing tolerance on the inelastic strain increment vector is
not met but the maximum number of Newton-Raphson iterations, MAXIT, is exceeded,

the subroutine exits from the iteration loop and proceeds to the next subincrement.

In order to use subroutine HYPELA, nine (9) constants must be defined in the
subroutine, starting at card number forty-four (44). These constants are:

NTP = number of tabulated temperature points in the
DATA statements,

MAXIT = maximum number of Newton-Raphson iterations
allowed,

MINIT = minimum number of Newton-Raphson iterations
allowed,

NELPR = element number for printout of incremental stress

and strain vectors,

IPR . _—1if stress-strain increment output is required,
\\\\\ 0 if stress—strain increment output is not required,

NPRIN = integration point number for printout of
incremental stress and strain vectors,

NSPLIT = number of subincrements per MARC increment,

SFTEMP = stress free temperature; for isothermal calculations
this is the isothermal temperature,

TDIF = temperature difference in the DATA statement in
which the material constants are tabulated.
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The material constants for the functional theory, viz.

o

Ay, W, £, n, m, Ny, N,, O, By, Og, B, O, Kl’ K. in Appendix 1,

6 7 2

depend on temperature., For Hastelloy-X these constants have been determined at

six temperatures ranging from 427°C (800°F) to 982°C (1800°F) in 111°C (200°F) ,
intervals. These material constants are entered into the MARC subroutine HYPELA

in DATA statements. At a specified temperature, the material constants are found
by a linear interpolation of the constants in the DATA statements. If the tempera-
ture lies outside of the tabulated values, a linear extrapolation, based on the
last two entries in the DATA statement table, is performed. The material constant
n s not entered directly into the DATA statements. Instead, values of its
reciprocal, n_l, are tabulated. At a given temperature n"l is then found by linear
interpolation in the table and n is determined as its reciprocal.

If the material constant n is determined by linear interpolation of its
tabulated values, unreasonable results are obtained for the material response.
Figure 33 shows the steady state hysteresis loops for Hastelloy-X at 704°C (1300°F)
based on a linear interpolation of the tabulated material constant n at 648°C
(1200°F) and 760°C (1400°F). This figure shows that the prediction of the 704°C
(1300°F) response, based on the linear interpolation of n, lies outside of the range
of the 640°C (1200°F) and 760°C (1400°F) responses. The constants at 648°C (1200°F)
and 760°C (1400°F) were obtained from the experimental data and the theoretical
predictions at these temperatures in Fig. 33 provide a reasonable correlation with
the experimental data.

The tabulated material constants are obtained from the asymptotic response of
the material at strain values large enough for the stress to obtain a saturated
limit. 1In order to obtain a realistic response at a given temperature, the material
constants should be obtained by a linear interpolation of the asymptotic response
of the material. If oy and 92 denote the theoretical asymptotic stress values cor-
responding to a strain rate ¢ attemperaturesCﬁ and Cb, where the strain value e is
large enough for the equilibrium stress to reach its maximum rate-independent value,

Q , then
max
L 1/n (@)
o) = Qmay (@)K (@))€ (5.12)
and
. )

From these equations it is clear that in order to obtain a realistic asymptotic
response for ¢ at a temperature @ between Ch and GE, a linear interpolation of
max’ K and n_l is appropriate. Numerical calculations show t?at a linear inter-
polation of n is inappropriate, and linear interpolation of n™~ is therefore per-
formed in the HYPELA subroutine.
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5.4 TInput Data Required by MARC

A listing of the data cards required for the thermomechanical loading history
described in Section 4.3 is given in Appendix 16. This problem consists of the
thermomechanical loading of a bar of Hastelloy-X material in which the bar is
subjected to the mechanical strain and temperature histories depicted in Figs. 25 -
27. Since only mechanical strain is being imposed on the bar, this condition can
be simulated by setting the coefficient of thermal expansion o equal to zero and
imposing a given total strain history at the ends of the bar. A four element
axisymmetric problem is depicted in Fig., 34, Nodes one, two and three are given
incremental displacements which follow the total strain history of Fig. 26, whilst
each integration point of each element is given incremental temperature variations
which follow the temperature history of Figure 25.

Two cards are required before the END card (Card 10 of Appendix 16). These
are:

HYPOELAS
STATE VARS 16

A uniform temperature increment over the structure, together with an appro-
priate time increment, can be specified with the following cards;

THERMAL LOADS

1,
5.0, 2.0
BLANK CARD

In the above sequence of cards, the first state variable increment of 5.0 refers

to the uniform temperature increment A® = 5°F over the structure., The second state
variable increment of 2,0 refers to a time increment of At = 2 seconds. The re-
mainder of the card and the following BLANK card set the remaining fourteen (14)
state variable increments to zero. Since the STATE VARS card (Card number 7 of
Appendix 16) defines sixteen (16) state variables, MARC expects this number as
input. However, only the first two state variables, A® and At, are required as
input by HYPELA, so that the remaining (l4) state variable increments are set to
zero. The remaining (14) state variable increments are defined within subroutine
HYPELA.

If a nonuniform temperature over the structure is required (the usual case),
the temperature increments and time increment must be set in user subroutine CREDE.
This can be accomplished with the following header cards:

SUBROUTINE CREDE(DIDL,M,NSTRES,NEQST,NSTATS)

DIMENSION DTDL(NSTATS,NEQST,NSTRES)

COMMON/FAR/DUM, L

N = (where N = number of integration points in element number M)
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DO 2 IT =1, N

DTDL(1,1,1II)

temperature increment at integration point II

DIDL(2,1,11) time increment (can be made a function of load

increment number L)

2 CONTINUE
RETURN
END
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6.0 TASK IV - COMPARISON AND EVALUATION OF CONSTITUTIVE THEORIES

6.1 Determination of Material Constants

Material constants for each of the three candidate theories were determin§d
from the experimental hysteresis data presented in Figs. 11-16 and from the satu-
rated value of the equilibrium stress at a constant strain rate magnitude of
3.66 x 1074 sec™t at a temperature of 982°C (1800°F). Values of the constants
for the functional theory, Miller's theory, and Krieg, Swearengen and Rohde's
theory are presented in Tables 5 - 7.

The constant Aj in Krieg, Swearengen and Rohde's theory has been assumed to
have the wvalue A3 = 10_l for all temperatures. The thermal recovery term may
" then be approximated in the form

2
recovery = A, AzA3- Q;;QpqQpq /_%_Qrsﬂ,rs ) (6.1)

so that in uniaxial loading the recovery term is proportional to the fourth power
of the equilibrium stress. If A5 were larger in value, the exponential term would
grow very rapidly once the equilibrium stress reached a certain value, as shown in
Fig. 9, and the resulting stress-strain curves would exhibit a tri-linear behavior.
The small value of A3 and the resulting dependence of the static thermal recovery
term on 0% mitigates the severity of this tri-linear behavior.

The constants (n., + n_) in the functional theory, H, in Miller's theory and
Al in Krieg, Swearengen ang Rohde's theory determine the rapidity of the appyoach
of the equilibrium stress to its saturated value. For large values of these con-
stants the equilibrium stress grows so rapidly that it virtually saturates in the
"elastic" region and the stress-strain curve exhibits the "square'" behavior de-
picted in Fig. 35. For intermediate values the equilibrium stress approaches its
saturated value less rapidly and the stress-strain curve exhibits a rounded appear-
ance. For very small values of these constants, the equilibrium stress grows very
slowly. The asymptotic stress value, when Q@ = 0, is given by the functional theory
and by Krieg, Swearengen and Rohde's theory as

oke'/" (6.2)
and by Miller's theory as
_ . \!/ny2/3
o-zK{sinh I(ﬁ) } (6.3)
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TABLE 5

Material Constants for Functional Theory

Material 982°C 871°¢C 760°C 648°C 537°C 427°¢
Constant 1800°F 1600°F 1400°F 1200°F 1000°F 800°F
A 11.5E6 15.4E6 17.8E6 18.1E6 17.2E6 17.8E6
u 4.9E6 6.9E6 8.4E6 9.0E6 9.0E6 9.8E6
K, 59292 91505 251886 95631 75631 50931

K, 0 0 0 0 0 0
at .233 .195 244 .079 .059 .059

mn 1.16 1.16 1.16 1.16 1.16 1.16

n, 0 0 0 0 0 0

n, 1.0E6 5.0E6 2.0E7 1.5E7 6.0E7 30.0E7

ng 312 673 1179 781 1000 8000

n, o 0 0 0 0 0

ne 0 0 0 0 0 0

n, 2.73E-3 8.98E-4 0 0 0 0

n, 0 0 0 0 0 0

& ~1200 ~1434 ~2000 ~2000 0 0
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TABLE 6

Material Constants for Miller's Theory

K = 8000
o
n = 1.598
B = 1.0293E14
H - = 1.0E7
1
A = 9.305E-4
1
HZ = 100
C2 = 50000
A2 = 5.9425E-12
Q* = 104600
T = 1588°K
m
k = 1.9859
6! = exp { - Q*/kT } for T > .6Tm
Q% .6T
g’ = exp 1in (l + —2= for T < 6T
.6kTm T m

where T is the temperature in degrees Kelvin. The Lame constants A and
are as given in Table 5.
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TABLE 7

Material Constants for Krieg, Swearengen and Rohde's Theory

Material 982°C 871°C 760°C 648°C 537°C 427°C

Constant 1800°F 1600°F 1400°F 1200°F 1000°F 800°F
A 11.5E6 15.4E6 17.8E6 18.1E6 17.2E6 17.8E6
" " 4.9E6 6.9E6 8.4E6 9.0E6 9.0E6 9.8E6
K, 59292 91505 251886 95631 75631 50931
n~1 .223 .195 244 .079 .059 .059
A 1.0E6 5.0E6 2.0E7 1.5E7 6.0E7 30.0E7
A 243 14.96 1.54 .66 1.79E-3 .59
Aq 1.0E-12  1,0E-12  1.0E-12  1.0E-12  1.0E-12  1.0E-12
A, 0 0 0 0 0 0
A, 0 0 0 0 0 0
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Thus, for very small values of n, the theories predict a viscoelastic material
behavior and the stress—strain curve again exhibits a relatively ''square" behavior.
Numerical results for the functional theory are exhibited in Figs. 36 and 37 when
n, = 0 and n, = 0.8E7 and n, = 5.0E7, respectively. The "square" behavior for

large values on n, is apparent in Fig. 37. 1In changing the value of n, from 0.8E7
to 5.0E7, it is necessary to adjust the material constant ngy in the dynamic recovery
term in order to obtain the same saturated value of the equilibrium stress.

6.2 Strain Rate Behavior

“Figures 38 - 58 depict the steady state hysteresis loops obtained with the func-
tional theory, Miller's theory, and Krieg, Swearengen and Rohde's theory at tempera-
tures ranging from 648°C (1200°F) to 982°C (1800°F) in 38°C (100°F) intervals.

These loops represent the predicted behavior of the material for triangular strain
histories in which the magnitudes of the strain rates are 3.9 x 1073 sec_l, 3.7 x 107
sec_l, 3.7 x 107° sec_l, 1.1 x 1073 sec™ and 1.2 x 107% sec! and in which the
strain amplitude is + 0.6 percent. Tri-linear material behavior is observed in
Miller's theory in the temperature range extending from 648°C (1200°F) to 816°C
(1500°F), whilst the functional theory and Krieg, Swearengen and Rohde's theory pro-

duce rounder stress—strain hysteresis loops.

Figures 59 and 60 facilitate a comparison between the functional theory and
the experimental hysteresis loops at 871°C (L600°F) and 982°C (1800°F). The peak
stresses in the loops are well predicted, but at the lower strain rates the theoret-
ical predictions of the stress-strain behavior are too "square". This "squareness"
at the lower strain rates is common to each of the theories and arises from the fact
that the equilibrium stress saturates to a smaller value at low strain rates due
to static thermal recovery. For a given hardening rate of the equilibrium stress,
the saturated value is achieved more rapidly at low strain rates, and this produces
the "square" stress-strain loops. The theoretical loops at low strain rates could
be made rounder by assuming that the constants which govern the hardening of the
equilibrium stress, viz. (nl + nz), H. and A , decrease in magnitude in proportion
to the decrease in the saturated value of the equilibrium stress. This is equiva-
lent to the assumption that these hardening constants depend on the magnitude of
the inelastic strain rate, éij‘

Figures 61 and 62 show the results of a MARC axisymmetric finite element
analysis of a cylindrical specimen of Hastelloy-X using the functional theory.
This specimen was cycled under fully reversed strain controlled conditions with a
strain amplitude of +0.6 percent at 982°C (1800°F) at a constant strain rate magni-
tude of 1.1 x 1072 sec_l. The MARC plots represent loading the specimen to +0.6 per-
cent strain, unloading and compressing the specimen to -0.6 percent strain, and
finally reloading the specimen to +0.6 percent strain. In Fig. 61 sixty (60) MARC
increments were used to load from O to +0.6 percent strain, one hundred and twenty
(120) MARC increments to load from +0.6 to ~0.6 percent strain, and one hundred and
twenty (120) MARC increments to reload from -0.6 percent to +0.6 percent strain,
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with one subincrement per MARC increment in subroutine HYPELA. The reason for

using a large number of increments to traverse the hysteresis cycle was simply

to obtain good definition of the stress-strain hysteresis loops in the plotted

output from MARC. Figure 62 shows the same hysteresis loop in which three (3)

MARC increments were used to load the specimen from O to +0.6 percent strain,

six (6) MARC increments to unload from +0.6 percent to -0.6 percent strain, and

six (6) MARC increments to reload from -0.6 percent to +0.6 percént strain. ¢
Thirty (30) subincrements were used per MARC increment in subroutine HYPELA. A $
comparison of Figs. 61 and 62 shows that even with the large MARC increments used

in Fig. 62 the stress at the end of the MARC increment lies on the stress-strain
hysteresis loop. Experience with the algorithm shows that even if only one sub- '
increment per MARC increment is used, the stress at the end of the MARC increment !
lies on the stress-strain hysteresis loop.

6.3 Creep and Relaxation Behavior

A comparison of experimental and theoretical creep predictions using the
functional theory is shown in ‘Figs. 17 and 18. The experimental results were gen-
erated by traversing a steady state hysteresis loop carried out under fully reversed
strain controlled conditions at a strain amplitude of +0.6 percent at a constant
strain rate magnitude of 3.7 x 10™% sec™t at temperatures of 871°C (1600°F) and
982°C (1800°F). At various points on both the tension going and compression going
loading branches of the hysteresis loops, the stress was held at a constant value
and the creep results were recorded on a strip chart. After each creep test was
completed the material was cycled again at +0.6 percent strain amplitude at a
strain rate magnitude of 3.7 x 1074 sec_l. After a few cycles the material will
cycle around the original steady state hysteresis loop and the effects of the pre-
vious creep tests are wiped from the materials memory.

The functional theory was integrated around the hysteresis loops at 871°C
(1600°F) and 982°C (1800°F). At various points on the hysteresis loops the stress
was held at a constant value and the resulting creep strain produced by the vis-
coplastic theory was computed. The dots in Figs. 17 and 18 represent the predic-
tions of the functional theory. Since the theoretical hysteresis loops are too
"square'" in comparison with the experimental curves, the initial strain at which
creep commences differs in the experimental and theoretical creep curves. To avoid
this discrepancy the theoretical and experimental creep curves in Figs. 17 and 18
have been normalized to a zero initial strain.

According to the theoretical formulation, steady state creep is indistinguish-
able from the stress—strain behavior at large strain values on a hysteresis loop
executed at a constant strain rate, since at large strain values the stress satu-
rates to a constant value. This conclusion is supported by the close agreement
between the theoretical and experimental creep behavior, since the material constants
were determined from the hysteresis loops and not from the creep curves. A differ-
ence in the compressive and tensile hysteresis behavior found in the stress-strain
loops is also evident in the creep behavior, the material being stronger in
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compression than in tension. The introduction of the constant, 8, into the
functional theory to account for the different tensile and compressive hysteresis
behavior also accounts for the difference between the tensile and compressive
creep behavior shown in Fig. 18.

Figure 63 depicts the creep response obtained with Miller's theory at 1600°F.
Since Miller's theory predicts equal response in tension and compression, only ‘
the results for the compressive calculations are given. At low stress levels the
predictions are not as good as the functional theory predictions. However, a
reasonable creep prediction is obtained at the highest compressive stress level
of -197 MPa (-28,600 psi). These creep predictions have been made at a temperature
where Miller's theory should be at its most accurate. The accuracy obtained at
other temperatures will decrease because the material constants provide a best fit
at 1600°F and give considerable scatter in attempting to correlate the behavior at
other temperatures.

The creep behavior obtained with Krieg, Swearengen and Rohde's theory at 871°C
(1600°F) and 982°C (1800°F) is very similar to the creep behavior of the functional
theory in the case of tensile creep. It predicts equal tensile and compressive
creep behavior.

Stress relaxation data was obtained at temperatures varying from 648°C (1200°F)
to 982°C (1800°F). 1In the tests stress relaxation was initiated at a zero strain
value on the compressive loading branches of three steady state hysteresis loops
carried out at constant strain rate magnitudes of 3.9 x 1073 sec_l, 3.7 x 1077 sec”
and 3.7 x 1072 sec—l with strain amplitudes of +0.6 percent. After each stress
relaxation test the material was cycled several times around the steady state
hysteresis loops to erase the preceding hysteresis and relaxation tests from the
memory of the material.

Since the relaxation data was not used in the determination of the material
constants, very little of the experimental relaxation data has been compared with
the theoretical predictions to date.

In Figs. 20 - 22 the dots represent calculations of the stress relaxation
obtained by integrating the functional theory around steady state hysteresis loops
executed at strain rates of 3.9 x 1073 sec_l, 3.7 x 1074 sec™l and 3.7 x 1072 sec”
under strain controlled conditions with strain amplitudes of +0.6 percent at 982°C
(1800°F). At zero strain values on the compressive portions of these loops the
strain was held at zero and the resulting stress relaxation produced by the theory
was computed. The agreement between the theoretical predictions and the experimental
relaxation tests show satisfactory agreement.

6.4 Thermomechanical Behavior
The thermomechanical loops predicted by the functional theory, Miller's theory
and Krieg, Swearengen and Rohde's theory are displayed in Figs. 64 - 66. These

hysteresis loops are produced by integrating the theories over the temperature and
mechanical strain histories depicted in Figs. 25 - 27.
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From Fig. 64 it is evident that the functional theory prediction exhibits a
relatively small amount of stress relaxation at the maximum temperature of 954°C
(1750°F) in Fig. 25. Note from Fig. 26 that the maximum temperature hold period
does not correspond to the maximum compressive mechanical strain. In fact the
strain is held constant on the unloading branch of the thermomechanical hysteresis
loop. The hysteresis loops show a progressive overall stress relaxation in the
positive stress direction and the loops stabilize after about three cycles in ¢
conformity with experimental observations.

Figure 65 shows the thermomechanical loop predicted by Miller's theory. The
theory predicts a large amount of stress relaxation at the maximum temperature hold
period and the loop stabilizes in one cycle. 1In the tensile portion of the thermo-
mechanical loop the theory exhibits an elastic behavior and does not predict the
tensile yield which is observed experimentally in Fig. 24.

Figure 66 shows the thermomechanical loop predicted by Krieg, Swearengen and
Rohde's theory. The theory predicts a relatively small amount of stress relaxation
at the maximum temperature hold period and the loop stabilizes in one cycle. 1In
the tensile portion of the thermomechanical loop the theory exhibits tensile yield-
ing with a slight stress dip at the top of the tensile portion of the loop.

By changing the material constants by a small amount in the functional theory
and in Krieg, Swearengen and Rohde's theory, it is possible to produce pronounced
stress dips at the top of the tensile portion of the thermomechanical loop similar
to that predicted in Fig. 69. This predicted dip in the stress response at the max-
imum tensile position in the thermomechanical hysteresis loop may be due to two
factors. First, the strain rate at the maximum tensile stress is very small and the
material may be relaxing. Experimentally the material exhibits a relatively rate~
insensitive response at the temperature corresponding to the maximum tensile stress,
so that experimental relaxation should not be, and is not, observed. However, the
theoretical models cannot reproduce a rate-insensitive response, so that the
theoretical models respond to a small strain rate by producing a stress relaxation.
The amount and rate of relaxation depend on how far the stress at the maximum tensile
position exceeds the equilibrium stress. Secondly, the theoretical models predict
that during elastic deformation the equilibrium stress remains constant. During
the initial compression phase of the cycle, the equilibrium stress is negative. At
the maximum temperature of 954°C (1750°F) the hysteresis response starts to elastic-
ally unload. As the stress increases elastically into the tensile region of the
hysteresis loop, the equilibrium stress remains constant at its maximum negative
value, since the equilibrium stress state variable changes only with inelastic deforma-
tion. However, if the equilibrium stress increased due to changes in temperature
as the stress increases elastically, the difference between the actual stress 943
and the equilibrium stress Qij would remain relatively small and the inelastic
strain rate expression éij’ which depends on the difference between o, and Qi"
would provide a gradual growth in the inelastic strain, similar to that observed
in an isothermal hysteresis loop. But if Qi' "sticks" at its maximum negative value
during an elastic excursion in which the stress 044 is increasing, the inelastic
strain will grow very rapidly. This rapid growth In inelastic strain will also
produce a stress dip in the hysteresis loop.
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The equation governing the growth of the equilibrium stress Qij in the
functional theory may be written in the form

ij (1) = Q i {oth-cie} 9Cij
+n(@M)ciit+nz(@ (1) fe } a{lj de (6t4)

If the material constant ny (©(t)) appears inside the integral in the form ny, (O(£))
the terms involving @ in the preceding expression do not appear. However, with the
© terms, the equilibrium stress can grow with temperature during an elastic excur-—

sion (in which éij = 0 and G = 0) according to the relationship
. an, ) an
, REELL Q

Tn the FORTRAN subroutine HYPELA the functional theory has been implemented
with the equilibrium stress having the form

t acij t ~dem-ocE)
Qij(t)=8ii(1)+:£nl(®(§) a{| dg+f ,(@E)e fon-sigh 5” d¢, (6.7)

so that the é terms will not be present in the corresponding differential equation.
This form of the equilibrium stress equation prohibits the equilibrium stress from
changing during elastic excursions and was used in the computation of the thermo-
mechanical loop in Fig. 64. It is thought that the expression in (6.4), which has
been written as part of the functional theory in Appendix 1, will give a better
representation of the thermomechanical hysteresis response. Future investigations
will implement Eq. (6.4).

Stress dip anomalies due to relaxation at the maximum tensile position in the
thermomechanical hysteresis loop can also be avoided if the instantaneous response
of the material is assumed to be inelastic. At present the instantaneous response
is elastic. If the instantaneous response is given by o By and the equilibrium
response by 0ij = Qlj’ then by adjusting the growth laws %o E and QlJ so that
at any time their magnitudes in the inelastic region are close to one another
(uiJ ~ Q. J), the response can be made rate-insensitive at lower temperatures and
the relaxatlon in the tensile poriton of the thermomechanical hysteresis loop can be

avoided.
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Based on the favorable comparison of the experimental and theoretical hysteresis
loops, together with good short time creep predictions, at temperatures ranging from
800°F (427°C) to 1800°F (982°C), the functional theory was chosen to perform the
cumbustor liner rig analysis.

6.5 Combustor Liner Rig Analysis

A three dimensional inelastic finite element analysis of the induction rig
specimen described in Section 4.4 was undertaken in Ref. [8] under contract NAS3-21836
with the NASA-Lewis Research Center. This analysis was conducted with constitutive
modelq,currently available in the MARC program. The analysis has been repeated in
the présent contract with the functional viscoplastic theory.

A three dimensional finite element model of the cylindrical louvered induction
rig specimen is shown in Fig. 67. The model contains an included angle of 0.577°
which represents the angular distance between the radial symmetry planes of two
adjacent cooling holes. This small model size was selected because of the circum—
ferentially uniform temperatures in the louver lip region and to minimize computer
run time,

As shown, the model consists of thirty (30) finite elements. Twenty-one (21)
of the elements are the twenty (20) node isoparametric element with reduced inte-
gration using eight (8) Gauss integration points (MARC element #57). Since it is
known that some reduced integration point elements are unreliable if distorted shapes
are used, the full twenty seven (27) integration point element (MARC element #21)
was used around the cooling holes. Selection of the reduced integration point ele-
ments was based on initial estimates of the savings in computer run time over the
full integration point element, and to minimize the required spatial temperature
interpolation between the heat transfer and structural analysis meshes.

The effect of the complete shell structure was simulated by the appropriate
boundary conditions. Along the radial plane AC and BD in Fig. 67, only radial dis-
placements were permitted. This was accomplished by use of the TRANSFORMATION option
in MARC to transform the global degrees of freedom in these planes to the local
coordinate systems. Along the planes AB and CD the effect of the fore and aft
louvers was simulated by requiring that the radial displacements, u,, of nodal points
on each plane were related by the equation

R

(U = (urlep x RER, (6.8)

where RAB is the original radial coordinate on AB and Rop is the original radial
coordinate on CD. An additional condition equated the axial slopes along these
planes. These conditions were prescribed by means of the user subroutine UFORMS.
The fact that a series of louvers may be represented by this technique had been
demonstrated in previous elastic shell of revolution analyses.
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Numerical accuracy problems associated with the small included angle were
investigated with a simple two element model having an included angle equal to
that of the louver model. An initial analysis with this model produced stresses
on the order of 69 MPa (10000 psi) when run in an isothermal condition in which
the stresses should have been zero. In this model the radial displacements, due
to the free thermal growth, were serveral orders of magnitude larger than the
circumferential displacements. Circumferential (hoop) stresses were produced as a
result of numerical round-off during the single precision solution on the IBM 370/
3033 computer. Using a double precision version of MARC significantly reduced the
round-off error to produce an acceptable isothermal solutiomn.

- The thermal increment file generated in Ref. [8] was used to drive the struc-
tural analysis. A small mechanical pressure load was applied initially followed by
sixty-one (61) thermal load increments per hysteresis cycle. Two hysteresis cycles
were completed in the analysis. The transient temperature at the integration point
closest to the end of the louver 1lip (the fatigue critical location) is shown in
Fig. 68. Figure 69 depicts the hoop stress vs. hoop mechanical strain hysteresis
loop at the corresponding integration point for two thermal loading cycles consist-
ing of one hundred and twenty-one (121) MARC thermal load increments. Thirty (30)
subincrements per MARC increment were used to ensure an accurate description of the
viscoplastic behavior in the subroutine HYPELA. With the new integration algorithm
the two thermal loading cycles could have been traversed with much less than one
hundred and twenty-one (121) MARC thermal load increments; this number of increments
was used, however, because of the availability of the thermal load increment file
from the analysis conducted in Ref. [8].

The thermomechanical response shown in Fig. 69 exhibits an apparent ratchetting
in the negative strain direction. This ratchetting is believed to be due to the
elastic behavior observed in the low temperature tensile portion of the thermome-
chanical hysteresis loop. A stress dip phenomenon is also observed at the maximum
tensile stress obtained in the loop. Neither the excessive elastic behavior, nor
the stress dip phenomenon, is observed in the experimental thermomechanical response
shown in Fig. 24. Note, however, that no ratchetting is observed in the experimental
thermomechanical response in Fig. 24 because the maximum mechanical strain amplitude
is kept constant at -0.45 percent.

The ratchetting of the thermomechanical hysteresis loop with its associated
tensile elastic response and stress dip phenomenon, coupled with the generally
poor predictions of the thermomechanical response produced by the viscoplastic
constitutive theories, points to a need for further research on the thermomechanical
behavior of Hastelloy-X and other high temperature structural materials. In general,
the isothermal predictions of the theories with respect to strain rate, creep and
relaxation behavior, is good. Further analysis, along the lines suggested in
Section 6.4, is required to improve the thermomechanical predictions.
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7.0 DISCUSSION OF RESULTS AND CONCLUSIONS

The unified viscoplastic constitutive theories of Walker (Appendix 1),

Miller (Appendix 4), and Krieg, Swearengen & Rohde (Appendix 8), were installed
for use in the MARC nonlinear finite element program by means of an initial stress
method. An experimental program on Hastelloy-X material supplied the material
constants for each of the theories at temperatures varying between 800°F (427°C)
and 1800°F (982°C). General conclusions and observations concerning the work per-
formed in this contract are:

L.

The unified viscoplastic theories are represented by systems of "stiff"
differential equations. In order to integrate such theories over the finite
element load increment, it is necessary to split the finite element increment
into a number of subincrements and integrate the constitutive theories over

the subincrements. By using a large number of subincrements the constitutive
theories can be integrated accurately over arbitrarily large finite element
load increments. The size of the finite element load increments is limited
only by the fact that proportional loading (strain increments are proportional
during the finite element load increment) is assumed to occur over the incre-
ment. Consequently, the finite element load increments must be small enough

to ensure that the strain history at any point in the structure can be repre-
sented by increments of proportional loading. The strain history, at any point
in the structure, which in general is nonproportional, is then represented by a
series of proportional strain increments in which the constant of proportionality
changes from increment to increment.

The solution time required for a complete load increment in a finite element
program is linearly related to the number of subincrements used in the inte-
gration of the constitutive equations. A reduction in the number of subincre-
ments can be effected if the viscoplastic constitutive theories are written in
;an integral form and the theories are integrated over the subincrements by
means of a suitable recursive algorithm. By means of the recursive algorithm
developed in this contract the number of subincrements can be reduced to one. This
corresponds to integrating the constitutive equations directly over the finite
element load increment. Because the recursive algorithm is stable and accurate,
even when the integration increment is large, the computer time required to
integrate these "stiff'" viscoplastic formulations can be substantially reduced.

The viscoplastic constitutive theories examined give adequate accuracy in
predicting the rate-dependent response of Hastelloy-X under uniaxial isothermal
loading conditions. It appears that tabulating the material constants as a
function of temperature provides improved accuracy over that obtained by assum-
ing that strain rate effects and temperature effects are coupled by the Arrhenius
type of exponential relation used in Miller's theory. Care must be taken, when
tabulating the material constants as a function of temperature, to ensure that

a reasonable asymptotic stress-strain response is obtained. Some of the material
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constants, such as the inelastic strain rate exponent, n, control the magnitude
of the computed stress at large strain values. The best way to obtain an inter-
polated value of n is to interpolate the asymptotic stress-strain response and
then to determine the value of n from the interpolated response. In this con-
tract the reciprocal, n_l, is interpolated in the temperature tables, since this
gives an adequate representation of the asymptotic stress—strain response af a
given temperature.

Relatively poor accuracy is obtained when the viscoplastic theories are used to
predict the uniaxial thermomechanical behavior of Hastelloy-X. It appears that
improved accuracy can be obtained by assuming that the state variables can change:

“ with temperature during "elastic" excursions and by assuming that the instantan-

eous material response is inelastic, rather than elastic.

The computer time required for the three dimensional structural analysis of the
combustor liner induction rig test specimen was about the same as that required
by the conventional yield surface plasticity theories available within the MARC
program. This structural analysis was performed by integrating the functional
theory over thirty (30) subincrements for every MARC load increment. Since the
number of subincrements can be decreased by a factor of thirty and the number of
MARC load increments can also be substantially reduced compared with the number
of increments required to preserve accuracy and stability with the conventional
yield surface plasticity theories, the new integration algorithm will cut the
cost of nonlinear finite element analyses substantially over the cost required
for conventional plasticity analyses.

’
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8.0 RECOMMENDATIONS

This contract has provided an enhanced capability for analyzing structural

components which operate under cyclic elevated temperature conditions. Further

work is necessary in order to:

1.

4

Improve the uniaxial thermomechanical response of the constitutive theories.
Improvements can be effected by: (a) allowing the state variables to change
with temperature during "elastic" excursions in a thermomechanical simulation;
and (b) by allowing the instantaneous response, Gij = Eij’ to be inelastic by
specifying suitable growth laws for the variable Eij'

Verify, and modify if necessary, the constitutive response under multiaxial
loading conditions.

Apply the constitutive theories to other materials, both isotropic and aniso-
tropic.
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i Bij AND a¢; HAVE BEEN COMPUTED AT EACH INTEGRATION

1

CALCULATE a¢; = Bij._\uj

UPDATE STRESS, STRAIN, TEMPERATURE
AND STATE VARIABLES

y

NEXT INCREMENT n +1

——
CONVERGED?
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YES ERROR EXIT

Figure 31. Flow Chart of MARC lteration Procedure
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Figure 32. Integration Algorithm is Stable and Accurate
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Figure 33. Theoretical Hysteresis Loops for Hastelloy-X Predicted with Linearly

Interpolated Material Constants
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Figure 34. Axisymmetric Finite Element Model Used in the Thermomechanical History

Simulation Models One Quarter of the Problem Using Roller Boundary Conditions
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Figure 35. For Large and Small Work Hardening Rates the Stress-Strain Curves are
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Stress-Strain Curves are Rounded
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Figure 36. Hysteresis Loops for Hastelloy-X at 760°C (1400 °F) Generated with the
Functional Theory with ny =0.8 x 107
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Figure 37. Hysteresis Loops for Hastelloy-X at 760°C (1400 °F) Generated

by the Functional Theory with n,=5.0 x 107
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Figure 38. Theoretical Hysteresis Loops at 649°C (1200 °F)
Generated with Functional Theory
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Figure 39. Theoretical Hysteresis Loops at 704°C (1300 °F)
Generated with Functional Theory
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Figure 40. Theoretical Hysteresis Loops at 760°C (1400 °F)

Generated with Functional Theory
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Figure 41. Theoretical Hysteresis Loops at 816°C (1500°F) Generated

with Functional Theory
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Figure 42. Theoretical Hysteresis Loops at 871°C (1600°F) Generated

with Functional Theory
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Figure 43. Theoretical Hysteresis Loops at 927 °C (1700 °F) Generated
with Functional Theory
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Figure 44. Theoretical Hysteresis Loops at 982°C (1800°F) Generated
with Functional Theory '
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Figure 45. Theoretical Hysteresis Loops at 649°C (1200°F) Generated
with Krieg, Swearengen & Rohde’s Theory
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Figure 46. Theoretical Hysteresis Loops at 704°C (1300 °F) Generated
with Krieg, Swearengen & Rohde’s Theory
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Figure 47. Theoretical Hysteresis Loops at 760°C (1400 °F) Generated

with Krieg, Swearengen & Rohde’s Theory
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Figure 48. Theoretical Hysteresis Loops at 816°C (1500 °F) Generated
with Krieg, Swearengen & Rohde’s Theory

109

+1

81-9-103-25



6.9 MPa

STRESS (ksi) 1 ksi

100 ’

50

387x10° s

366x107% ™!

/l 370x107° s

y 4 5 -1
o+ 1.11x107s

/ / 1.25%x 100 571
/ /

-50

-100

-1 0 +1
STRAIN (%)

Figure 49. Theoretical Hysteresis Loops at 871°C (1600 °F) Generated
with Krieg, Swearengen & Rohde’s Theory
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Figure 50. Theoretical Hysteresis Loops at 927 °C (1700 °F) Generated
with Krieg, Swearengen & Rohde’s Theory

81-9-103-28
111



6.9 MPa

STRESS (ksi) 1 ksi

100

50

387x10° 57!

366 x 1074
370 x 107

o1
o
111x10° ¢!
3

125%x10% s

-100

0
STRAIN (%)

Figure 51. Theoretical Hysteresis Loops at 982°C (1800 °F) Generated

with Krieg, Swearengen & Rohde’s Theory
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Figure 52. Theoretical Hysteresis Loops at 649°C (1200 °F) Generated

with Miller’s Theory
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Figure 53. Theoretical Hysteresis Loops at 704°C (1300 °F) Generated

with Miller’s Theory
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Figure 54. Theoretical Hysteresis Loops at 760°C (1400 °F) Generated

with Miller’s Theory
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Figure 55. Theoretical Hysteresis Loops at 816°C (1500°F)

Generated with Miller's Theory
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Figure 56. Theoretical Hysteresis Loops at 871°C (1600 °F)

Generated with Miller’s Theory
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Figure 57. Theoretical Hysteresis Loops at 927 °C (1700 °F)
Generated with Miller’s Theory
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Figure 58. Theoretical Hysteresis Loops at 982°C (1800 °F)
Generated with Miller’s Theory
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Figure 59. Comparison of Experimental and Functional Theory Predictions for

Hastelloy-X at 871°C (1600 °F)
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Figure 60. Comparison of Experimental and Functional Theory Predictions
for Hastelloy-X at 982°C (1800 °F)
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Figure 61. Hysteresis Loop Predicted by Functional Theory at 982°C (1800 °F)
for Strain Rate of 1.25 x 106 sec1. Output from MARC
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Figure 62. Hysteresis Loop Predicted by Functional Theory at 982°C (1800°F) for Strain Rate of

1.25 x 106 sec'1. Three MARC Increments were used to Load from Zero Strain to
0.6% Strain with Thirty Subincrements per MARC Increment
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Figure 64. Thermomechanical Loop Predicted by Functional Theory
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Figure 66. Thermomechanical Loop Predicted by Krieg,
Swearengen & Rohde’s Theory
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Figure 67. MARC Finite Element Breakup of Combustor for Liner Specimen
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Figure 68. Transient Temperature Response at Integration
Point Closest to the Louver Lip
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Figure 69. Hoop Stress Hoop Strain Hysteresis Response at Integration
Point Closest to the Louver Lip
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Figure 70. Elastic-Perfectly Plastic Hysteresis Loop Approximation

for Hastelloy-X at 982°C (1800 °F)
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Appendix 1. Walker’s Theory (Integral Form)
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Appendix 2. Walker’s Theory (Differential Form)

(:ij ‘
K 2 (3. \!
\/?(2 Sij QlJ)(ZSJ_QIJ)
on | onp
Q] (ny+n3)¢;, +cIJ 30 ® (Q. Q j~mic J)(G—ﬁ? 30 @)
K:KI—KZ e_n7R,

ij

m—|

- —NzRy¢ _2_ 2
G=(ng+nge s )R+n6( 3 ‘Qij‘Qij) )

S B
S$ij=o ™ 73 BijTkk -

0
Material constants: \,u,£,n,m,n;,n5,Nz,N4,Ng,Ng, N7, K|, K2 depend on temperature.
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Appendix 3. Chaboche’s Theory
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Appendix 4. Miller’s Theory (Differential Form)
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Material constants: n.H,,Hz2 ,A|, Az, Cg-,Q*, k are independent of temperature.

Material constants: A\, g ,Kq ,9' depend on temperature, where K is the initial value of K, and T is the temperature n °K.
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Appendix 5. Miller’s Theory (Integral Form)
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Appendix 6. Lee and Zaverl’s Theory (Isotropic Form)
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Material constants: A,u K1 Y51 N1G,Cy Qs h.a depend on temperature, where K, and Y, are the initial values of K and Y.

Material constants: B,D,k are temperature independent.
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Appendix 7. Bodner, Partom and Stouffer’s Theory (Isotropic Formi
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Material constants: X\, u ,Dg .oz.q.rn,n vZ1Z depend on temperature

. is not a tensor, but depends on the sign of the ijth component of the inelastic strain rate.

The quantity ZiJ
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Appendix 8. Krieg, Swearengen and Rohde’s Theory (Differential Formn)
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Material constants: A\,u,n,A,A2,A3,A4,A g K, depend on temperature, where K, is the initial value of K.
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Appendix 9. Krieg, Swearengen and Rohde’s Theory (Integral Form)
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—{um-ge} 4R
K=K, (® fA3 o d¢,
t Oe ae 0ai; 0®

P 3u(@E) [ or \I—1/nB©)
O(T):/(; <@ (a£ de

2
f \/2 Q (E 1( A3(®(£)) 3 Q”(‘E)Ql]({)—l)df’

t
( —
J(T)=‘/; A4(@(£>)(K({)—KO(@(.g)))”(@ e

2_
3

o
o

)df,
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Appendix 10. Cernocky and Krempl’s Theory (Integral Form)

t don-ql&) O¢ i de 0Qij
cij(t)=Qij(t)+./;e { }(2#(@)(5» ag" +sijx(®(s))—a§—k—-—ag-——a”a(@(gn 3IN@E) +2,(0(8)
@M +a@) . A Bw. (1)

o (g {E(@(T)) e - (e -E,em) C05h<b(®( VAR > }
it =&t ¥ ’
1 (I, o 2a(®(1) tanh|b(@())

NAURMIN a®(1) tann (@) cosh(b(@(t))—o(@(ﬂ) %;‘M“’)

1

\I/i.(T)=[8”>\(®(t))ekk(1)+ 2 (@M)e, (1-5;; (@) (3 A@1)+2, (@1 ))]/m@(r» ,

M (3)\+ 21u_)

Material ““constants”: X,u,E,G,b,K.8,L depend on temperature, E =Young's modulus = o

Material “‘constants’: E;,a,b,K ,S,C are updated under cyclic loading conditions.

In this particular formulation it is assumed that Poisson’s ratio is constant. This assumption can easily be relaxed.
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0¢

)di,
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Appendix 11. Hart’s Theory

( S‘]_‘Q‘lj)
3 '
2

iy i) (i)

o (V) Esian) n
cij=ad ( K ) JEE

(e*)™ Qi

.QzKC_Kf - ?
ij ij * /8
/5 0pq8pq (M = g )
/5 Qpqflpg

e Cie* )™M (*, )

o - ]

= .
vV 3 8pqilpg

* . __7_8 . . .
F(c",Q):= o *] » (other forms were also considered in Delph’s review paper [23]

—(8 )\ekk+2,u.6” i

] |
Sij* i~ 3 3ijTkk



71

Appendix 12. Valanis’ Theory (Isothermal Form)

0

de i; o€
] > 1 I kk
o-ii(T)-Sij ()\+ —gp)ekk(ﬂ+f6 [Z(T)—Z(f)] { o0& 3 Bij 0& }df )

of2 -216)]- Gle—al[z(t)—Z(E)] roe - a2t -2(¢)] |

e ~
2=~ I (1= BRI,
rtoe (28
R 52 f(a )dg,

o6 . BC” aCij

2 "1 )
& 338 o8¢

06
f( >= a function of —g—g— which varies [25] according to the type of deformation (creep, relaxation),

23

acCij 0€, oo deij ) doij (0<k<1)
3¢ %i* Tag TH Tae T '

Material constants: \,u,G,,G5,9), @5, ,k. Further constants are needed to define f (%%)



APPENDIX 13

A question naturally arises as to how much heat is generated in uniaxial ,
Hastelloy-X specimens when they are subjected to cyclic, triangular s&rain his-
tories, at strain amplitudes of about T3 percent. The specimens are cycled at
a given temperature which is monitored by thermocouples attached to the grips at
the ends of the specimen. If heat is generated by the dissipation of inelastic
work during cyclic loading of the specimen, the temperature of the specimen will
inerease above that of the oven temperature until a steady state is reached.

Under steady state conditions, the rate at which heat is produced by inelastic

working of the cylindrical specimen is equal to the rate at which this heat is

conducted through the grips at the ends of the specimen and through radiation and
conduction at the cylindrical surface of the specimen. The following calculations
show that at 982°C (1800°F), for a strain rate magnitude of 3.9 x lO_3 sec—l, the
steady state temperature in the central part of a Hastelloy-X cylindrical button
head bar specimen exceeds the oven temperature by about 0.8°C (1.4°F) due to in-
elastic working. At room temperature, the temperature rise in the specimen does
not exceed 22°C (40°F) at a strain rate of 3.9 x 1073 cec T, whilst at 3.9 x 10~
sec — it does not exceed 2°C (4°F). Hence, the effects of inelastic dissipation
of work into heat can be neglected in the data reduction of the Hastelloy-X tests.

4

The coupled heat conduction equation for a cylindrical rod under uniaxial
loading may be writtew in the form

2% _, (2% 1 00 0%
pS = r r 622

+D, 1
dr? or? 0 =

where o is the density, s is the specific heat, ® is the temperature in the speci-
men, and D is the rate of dissipation of work into heat due to inelastic working.
In formulating Eq. (1), small heat source terms, such as that arising from the ex-
pansion and compression of the material, have been neglected in comparison with

the inelastic dissipatiom.

Under cyclic loading, about 90 percent of the work in typical metals is dissi-
pated as heat whilst the remainder is used to produce microstructural changes
(evidenced by working hardening). Since Hastelloy-X does not work harden at
elevated temperature, one may assume that all of the work is dissipated as heat and
take D in the form D = o ¢ where ¢ is the inelastic strain rate. The average dis~
sipation rate over a hysteresis cycle is then obtained in the form

.
- L6, 9¢
5+ § o S5 a 2)

where T is the time for omne cycle.
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The value of D may be found by noting that the stress-—strain hysteresis loop
for Hastelloy-X at 982°C (1800°F) may be represented fairly well by an elastic-
perfectly plastic loop. Hence,

.
. dc . _area of loopin fig. 70 3
b7 éc og 9 T
or
4o A
T: —max,

where o is the maximum stress in the hysteresis loop.
max
At large strain values (~1%), the total strain is approximately equal to the

plastic strain, € = ¢, so that the magnitude of the total strain rate is given by
|é| & 4A/T. The average dissipation rate then becomes

D=0 maxlée! . (4)
Since o and 1él are spatially constant throughout the rod, the average dissipation

rate, given by D in Eq.” (4), represents a constant source of heat.

The steady state equations governing heat conduction in the rod are:

e (|, %®, )
. :;TT+HT—+"5;§+Q—O,Q=TT» (5)
k%‘?—+h(®—®o)=o at rza, (6)
®:@, at z:0 and z=g, (7)

where @, is the temperature of the end grips and the oven (as measured by thermo-
couples on the grips).

Choosing

O=00+v(r,2)+ ¢(2), (8)
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Eqs. (5)—(f) become

2 2 2
) | dv , 0°v , 9°¢ B
32t ar T avE t gz T Q0 e
ov
k—-—-—ar +thv=—h¢ atr:=a, (10)
v:—¢ at z:=0 and z=¢. (11)

Equation (9) can be made homogeneous by choosing

2
_a_é.yo
=0.
9z2
Choosing ¢ = 0 at z = 0 and z = £ then gives
¢ = QzlL-2), (12)

and Egs. (9)-(11) become:

9%y 1_9v Y . 1
a2 T ar 92279 (13)
k—‘-)i+hv:—-—l§-hoz(l—z) at r=a, (14)
or
v=0 at z:=0 and z=¢. (15)

The solution to Eq. (13) which is finite at r = 0 and satisfies the boundary condi-
tion in Eq. (15) is

@ nllz nllr
v ansin ¢ I,\"¢ /. (16)

nzj

where Io(x) is the Bessel function of order zero with imaginary argument given by

2 (3"

Fol®Jolixd :n2=:0 (n !)2



Satisfaction of boundary condition (Eq. (1l4)) requires that

Q | knll nlla nllg nllz I
n:
where
2n¥|
X (e8] X
1,0: AT (2

dx  n=o NHn+D)!
The Fourier expansion of z(2-z) on the interval (0,2) is given by

Q - nliz £ nll
z(Jz—z)=nZ' Bn sin "¢ where Bf% f zit-z)sin 7y 2,
= o]

or

AR 4?2 g n+ . nllz
z(4 z)nz| B‘gﬁ‘g‘{‘( ) +|} sin 5. (18)

Comparing coefficients in Eqs. (17) and (18) gives

2hqs? {(")n+'+'}

an== 7373 [k_r}rn_lo(%)wuhro(m}")

(19)

For n = 2,4,6,... the coefficients a, in Eq. (19) are zero. Equations (8), (12),
(16), and (19) then give the temperature in the rod in the form

in (2n+|)HzI [(an+|)nr]
ahQe? @ 2 ol ¢

|
®:®o+ 2 QZ(Q"Z)" 3 + 3 Ha
c | k(2n+ N1 (2n+1)1a (2n+1)
I n=0 2n+1) {.___1_.__:[' [———_l }-&hIO‘:———-————f }}

(20)

The maximum excess temperature occurs in the middle of the rod where r = 0 and
z = /2, and is given by
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. Qi®  g4hqe? @ | (="
0-8,= A®- 8 13 2 +0)°  [k(2n+1)11 (2n+N)11 (2n+n1a
o s (RS, [ [T

From the relation Q = D/k = ¢ ‘é], this becomes
max

Umodéuz__4hcmodéua f | |

ST A e (T S e

[

A ' ..
¥ 53 sl;n I,(5?°)+hlo(5g°) (21)

The thermal conductivity k for Hastelloy-X at 982°C (1800°F) is

2
tu.i 1 1 in. 1b
K = 195 B ; in _ 122 ble ;égox 2 1n21b - 3,51 o
ft.hr.°F X in. sec.®F sec.

The value of h is given by

h ~ 135 Btu2 _135 x 778 x 12 ;n.lb - 2.43 1b
hr.ft.°F 144 x 3600 in.sec.°F in.sec.’F
. . -3 -1 . +
At a strain rate of ]e| = 3.866 x 10 sec (10 cycles per minute at < 0.6

percent strain amplitude), Opax = 19212 psi. The length of the specimen is 2=1 in.
and its radius is a = 0.15 in.

Substitution of these values into Eq. (21) gives the excess temperature at the
center of the rod as
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From this result it can be seen that only the first term in the infinite series
contributes significantly to the result. Figure 71 shows the computed steady state
temperature excess, A@ , in various parts of the specimen obtained by keeping only
the first term in the series expansion in Eq. (20). The radial distribution of
temperature in the bar is almost uniform and the axial distribution is the difference
between a parabolic and sine function.

N

At room temperature o, = 100,000 psi at 10 cycles per minute and k = 60 Btu
in./ftz. hr. °F. The constant h is probably small, ~1 Btu/ft2.hr.°F. Neglecting
the - series terms which account for the radial outflow of heat, one obtains NGRS

45°F at 10 cycles/minute and A® = 4.5°F at 1 cycle/minute at room temperature.
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APPENDIX 14

RECURSIVE INTEGRATION METHOD FOR FUNCTIONAL THEORY 4

The uniaxial form of the function theory in Appendix 1 may be written, for
isothermal deformations ( © = 0), as

t —{o(ﬂ~o(€)} de ag)
M=o+ E55 — 57 1
o _/c;e ( 3¢ " g ) %€, (1)
t
) de | Jdg
c(ﬂ.fo(aE . ag)da, (2)
Q)= Q+n| t)+n2f Gm G(g)} gg d¢, (3)
K=K, ~-K —n7R(’r), (4)
t I-1/n
E (IR
ol 5 () e
fo <\ 3 3
! -ngRE)\ JR _
- 5 . |
G(T)-‘/(; (n3+n4e )a—+n6|&1(§)|m dé, (6)
_rhac
R(T)—j;|a§ d¢ . (7)

The decreasing exponential function in Eq. (1) implies that most of the con-
tribution to the integral comes from the region about the upper limit, t, where
Q(&) = Q(t). For general integrals of the form

t _{Q(n o<€)} am(&) (8)
I.£ ag dE
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it may be shown that the asymptotic expansion of the integral
t is given by the relation

(MmQ+m)
03

m_

I~ ;
02

- eeey

m__
Q

where dots denote differentiation with respect to time.

The first term of Eq. (9) may be applied to the integral

for large values of

(9)

in Eq. (1) to give an

asymptotic expression for the stress well into the plastic region at large values

of strain and time in the form

(10)

(11)

E€-Q
c=0 0+ 3 ,
where
._ £ (2R '"'/"__E_'G_C A D -
QK \at Kot | K | ot E ot
Since ¢ >> G/E and Ee¢ >>  in this large strain region, the asymptotic expression

for the stress takes the form

oz Q+Ke M.

(12)

This relation can also be derived by assuming that € >> G/E and Ee >> ( in
the uniaxial differential equation appropriate to monotonic loading, viz.,

Cze—

o E:il.n
E "\ K

(13)

In a finite element solution the strain increment Ae is supplied to the sub-
routine at the beginning of each load increment, and it is assumed that the strain

rate Ae/At during the load increment is constant.
each subincrement in a multi-step technique.
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The integrals in Egs. (1) and (2) contain the expressions (E de/3E - 30/0E) and
(3c/9E = 3e/98 -~ 30/Ed8). 1In an asymptotic expansion of these integrals (valid for
large values of t) the strain rate 3e/3f is the dominant term in the two preceding
expressions. Since the strain rate term is constant during the finite element lead
increment, it is therefore permissible, in an asymptotic expansion of the integrals,
to assume that the expressions (E 3e¢/3& - 3Q/3&) and (3c/3f) are constant during

the integration.

Consider the value of the stress 041 at time to41e assuming that the values

of the stress 0, and equilibrium stress Q, are known at time t,. Then, from Eq. (L)

'n —{Qn+|—0(£) de  0Q
"n+l—9n+|:,f; € }EY_F{- d¢

[t Se-58) d£+ftn+e"{°”+'_°“)}(57?§“%?‘) s

(o) th

(14)

:(O'n'—ﬂn

~{on+i-on} I+t _fg —o(i)}( de aa)
)e Un+i -
+j;n ° T d<-

For small time increments the exponential term in the integral is approximately
equal to one and the integrand (E 3¢/9f - 9Q/3&) may be assumed constant in the
integration over the small time interval. It is also permissible to assume that
(E 3e/3& - 30/93£) is constant in the asymptotic integration appropriate to large
time increments. Hence, for both large and small time increments, the integral

may be approximated in the form:

fntt _fony-06) qQ Ele - )=(Qn, o] Fn it o
f e { n+i }(EaL_g_)dgz n+l " Sn n+| n f o {On+| Q{}d{'(lS)

fn 9& 04 the1~ Tn th

where the subscripts n and n+l refer to the values of the variables at the times

ty and tn+l‘

The preceding integral may be written
P+ e_{Qn+|“°(‘E)} )
1
49 ) dQE), (16)
d¢

ftnﬂe _{Qn+|_0(f)} d{’f

t th
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and since

may be assumed to be constant in the integral for both large and small time incre-
ments, the integral on the right-hand side of Eq. (9) takes the form:

t -Q —3Q -Q
th Qn+1—Qp tn Qn+1—Qn
th+1~tn th+i—tn

Equation (15) may thus be integrated in the approximate form:

'n l ——{O —Q(g) o€ 08 —e {Qn ! On} ]
e N+l ——— 0 ~ —_ — I ( 7)
'[n (E a{/ { )d‘5 [E(en-i-l 6n) (‘Q'n"" ﬂn)] Qn H'—Qn

For large time increments the exponential term vanishes and the integral takes
the asymptotic form (E Ae - AQ)/AQ = (E¢ -Q)/Q, in agreement with the result in

Eq. (12). For small time increments the integral assumes the approximate value
(E Ae — AQ).

Substitution of Eq. (17) into Eq. (14) gives the recurrence relation

|—e_{on+'_0n}

—1Q -Q
on+1= Qnti+Hopg—Qple { n n} Qn+1—Qn - (18)

+[E(€n+|—€n)_(nn+|—ﬂn)]

Similarly, the recurrence relation for the equilibrium stress integral in Eq. (13)
may be written in the form:

I_e—{GnH“Gn}

Gn+;—6n

0 0 —{6n4— 6
Qppz+nch++(Qp—Q-nicple {n+| n}

+n,(Cn+=Cn) (19)
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In the recurrence relations in Egqs. (18) and (19), the values of Qu+l and
G,+1 at the end of the increment may be determined by the approximate relations

E (AR E
Qn+|"‘Qn:AQ:T(—_) AT:?

I—1/n
At lﬁ‘ At

At

and

Gn+|“Gn:AG:(n3+n4e_n5Rn+l) AR+n6|Qn+| A‘l"

lm—l

where AR and Ac are defined by the relations

(Fn+1%n)

Cn+i—Cn=Ac={ent—€n)- £

and

Rn+1—Rn=AR={ACI:

Evidently, the values of o_,4 and Qo1 depend on IACl and are therefore

4

(19)

(20)

(21)

(22)

implicitly defined in Egs. (19) and (20), since |Acl depends on 0,41, and O+l
depends on Q_,1. An iterative technique is therefore required to resolve these

equations. This iterative technique 1s described in Appendix 15.
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APPENDIX 15

RECURSIVE INTEGRATION METHOD FOR FUNCTIONAL THEORY
USED IN SUBROUTINE HYPELA 4

The integration algorithm developed in Appendix 14 is now used to integrate
the three dimensional equations of Appendix 1. The solution to the implicit re-
cursive relations is obtained by means of a Newton-Raphson technique.

In the following algorithm the symbol "A" in front of a variable refers to
the difference in the variable between the beginning and end of the increment. The

time at the beginning of the increment is denoted by t and at the end of the incre-
ment by t + At.

Since the stress tensor for non-polar media is symmetric, the constitutive re-
lations are written in vector form, so that o = 011» 09 = 0225 Og = 0335 Oy = 019,

05 = 0Op35 Og = Oy4 with similar definitions applying to c.., €,. and Qij'

1] 1]

In the following algorithm the symbol ei(t) refers to the mechanical strain,
so that

’ 1 ifig3

- Try . .:/
Aei)=Aeit1=8;al®, 8= .

where, Aeg(t) is the total strain increment. It is assumed that o (t), ei(t), Ci(t)’
Qi(t), R(t), Q(t) and G(t) are known at the beginning of the increment. Initially,
at time t = 0, o4(t) = ei(t) = ci(t) = 0 and R(t) = Q(t) = G(t) = 0, whilst Qi(t) =
Q. ().

i

To integrate the constitutive equations from time t to time t + At, the follow-
ing operations are required.

Step #1. Compute the values of the material constants at the temperature
©(t + 1/2 At) corresponding to the middle of the subincrement.

Step #2. Assume an initial guess for the inelastic strain increment Acy.
In a subincrement method this guess is taken equal to the devia-
toric strain increment in the first subincrement of the current
load step. In subsequent subincrements the guess is taken from
the preceding subincrement of the current load step.
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Step #3. Compute the inelastic strain at the end of the subincrement from
the relation

Ci(T‘*'AT):Ci(T)"'ACi 4

Step #4. Set Q4(t + At) = Q;(t) as a first guess for the equilibrium
stress at the end of the subincrement.

Step #5. Compute the initial values of the equilibrium stress at the end of
the subincrement from the relations

0 0 0

8, t+AD= - +2Q {c?(t+m)+c§<1+m)+cé(nm)}/nn ,
Q

Gott+an ==8+28 {ca(1+AN +c2 (t+AN+c2 (1+ AN} /Ay |
0 0 0
03(T+A’f)=—Q+29{c§(T+AT)+c§(T+AT)+c%(T+AT)}/&QIIL )
0 0 0
Q4 (t+AY) 22Q {c|(T+AT) Ca {1+ AT +Co(t+A 1) gyt +At) +C (T+At)<:6(t+Af)}/QII ,
0 0 0
Qg(t+AL) :2Q{c4(t+m) Ce(t+A)+C,(t+At) c5(t+At) +C3(1+AL) C5(T+AT)}/QE ,

S+t =28 {ei(t+ A1 g (1+AN+ Ca (1 +A1) cylt+AN+C tt+AD cglt +AN} /iy,

L4
where

0
Q= —%— {c,2(1+A’r)+ Cot+A+ c% (t+ A1) +2 [cﬁ (t+ A+ (H+AD+ 02 (f+AT)]}'

Step #6. Compute the cumulative inelastic strain increment from the relation

3 > ‘ 1 Lifi<3
AR:/Z ?Bi(ACi)z where Bi:/
= NG ifivs
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Step #7. Let subscript m refer to the number of iteratioms.

Set m 0.

Step #8. Set m = m + 1. This is the start of the iteration loop.
Step #9. Set AR, = AR. Compute the cumulative inelastic strain at the
end of the subincrement from the relation
R(+At) =R(1) + AR
Step #10. Evaluate the drag stress at the end of the subincrement from the
relation

-n-R (1+At)
K(H+AD =K, ~Ka e * :

Step #11. Evaluate the mth guess for AG from the relation

m—I|

ne 13 2 g a2 (1+an] 2 -

AGW\[n3+n4e—n5R“+AT]

b}

Step #12. Compute the inelastic strain at the end of the subincrement from:
the relation

ci(t+ A =c{(h+Ac, -

Step #13. Compute the equilibrium stress at the end of the subincrement from

the recursive relation

0} G "AGm
Q;(t+A1, AG L) 2Q,(H+A +n, ¢; (1+ AN +(Q, (1) - () nc;th) e m+Aci(—|—_e——)

AGm

Note that this is an implicit relation for the determination of Qi(t + At) since
AGy depends on Qi(t + At) if the recovery term involving ng is present (cf. Step

#11).

If ng = 0 and there is no recovery, this relation for Q;(t + At) is explicit

and no iteration is required for its determination.

Step #15. Compute equilibrium stress increment from the relation

AQ.=Qj(H+AL, AGm)-0;(1) -
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If ng = 0, skip the Newton-Raphson iteration for Q;(t + At) and
go to step #20.

Step #16. Compute the function f(AG,) where ’

6 m=1
]AR—nsAt[_ 2 3. Q% (1+A1, 86, 2 -

F(AGm) = AGy - [n3+n4 e—nsR(T+AT)

Note that if AG_, the guess for AG computed in Step #11, is exact, then £(AG,) = 0.
In general f(AGm) # 0 and a Newton-Raphson iteration is required to improve the wvalue
of AG,. (Note that the exact AG, satisfies both Step #13 and the relation £(0G) =
0.)

Step #17. Compute the derivative

d(AGy) ' ?(m_')r‘em[izz?ﬁiﬂi (t+AT,AGm)] 2
§ 29 (H+At, 86,)
4.5 AG ) )
b5 e ean, 3(AG)
where
dQ(1+At, AG,) . ) -
’ (o -8 .(-nc.ie 20 an, ac [A0me T +e |
3 (AGr) j=8;M=nc; ,
(AG)

by differentiation of the relation in Step #13.

Step #18. Refine AGm with a Newton-Raphson iteration

f(AG )
dH(AGm)
(4G,

Step #19. Compute refined value for the equilibrium stress at the end of the
subincrement from the relation

0 ' _ ~AGm 4
Q;(1+A1,AGm4 ) :ﬂi(T+At)+n,Ci(t+AT)+(Qi(T)—?),i(T)—n,ci(T))e A6m +, +Ac; '_eA—m .
Cm+1
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Compute equilibrium stress increment from the relation
AQ=Q(H+A, AGm 4+ )= Q; (1) .
Step #20. Compute the mth guess for AQ from the relation

3 I=1/n .
- fd AR {
AQm* K+ AT (m ) At

Note that AQ, depends on o;(t + At) through its dependence on AR (cf. Steps #'s
22 and 24).

Step #21. Compute the stress at the end of the .subincrement from the recursive
relation

(1+At, AQm): S 0 (H+ At > | 2 )s
o BQm)= 50 (H+ At)+q;, ZIToj(T)*‘ A3 jzlAe]
j= :

3 -Aaq )
+(gi(1)—% Qh-a, Z—gaj(n)e m +<2,¢Aei—ai‘%—y_ > ne % AQ-‘) SEL BuE
B m

////liﬂi53
where q. -

This is an implicit relation for Oi(t + At, AQ,), since AQm depends on oi(t + At),
which must be resolved by Newton-Raphson iteration.

I3

Step #22. Compute the inelastic strain increment from the relation
3
Ac (AQp) :{aiszlz hej+2p Doyt AL Q) + oy} /2

Step #23. Compute inelastic strain at the end of the subincrement from the
relation

Ci“’+ At)z c |(T)+AC|(AQ m) .
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Step #24. Compute the cumulative inelastic strain increment

. .
AR(AQ) :/Z—%—Bi[Aci(AQm)] :

Step #24. Compute the function F(AQm) where

3u AR(AQ ) |70

Note that AQ,, was evaluated in Step #20 and is used to evaluate AR (AQm) in Step
#24. If the exact value of AQ, is known, then F(AQ ) = 0. In general, F(AQ,) #0

and AQ, must be refined by a Newton-Raphson iteration. (Note that the exact AQy,
satisfies both Step #21 and the relation F(AQm) = 0.)

Step #26. Compute the derivative

OF(AQm! 3u | AR(AQe) ~vn IAR(AQR)
3(AQy) T TREAD w At AQm)
where
O(AR(AQ)) 9 ' | 6 d(AC;(AQ))

- < 3. (A S R -~ . —_—
3(AQm)  8(AQm) ,Z, 3 B'[AC'( Q"‘)] " TAR(AQM) .Z, 5 Bibci(Bam) =51 )

The derivative B(Aci(AQm))/B(AQm) is obtained from differentiation of the
relation for Ac;(4Q,) in Step #22 in the form

O(Aci(AQm)) | doi(t+At, AQp)
AQm)  2p 3(AQm)
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Step #27. Refine AQ with a Newton-Raphson iteration

F(AQm)
OF (AQm) .
0(AQm)

AQm4 = AQm ~

Step #28. Compute refined value of stress at the end of the subincrement from ;
the relation

3 3
o (t+A1 AQm+) = %Qi (t+At)+q; (ngo-j(T)-l'()& %,u.)z' Aej)
J:

-Aa
, ey A > 3 o BOm+
+(°'i(1)_?‘0'i(ﬂ a; 2—3-0-1(?)) e m+1 +(2/"A€i—ai-_3.l“’j§ AGJ—%-A\Q,-I) (—__AQm+I .

Step #29. Compute refined value of inelastic strain increment from the relation

AC,(AQ 1) {o)\z Aej+2p e = o (1+D1, AQma) + 0B} /2
j=1

, Step #30. Compute refined value of cumulative inelastic strain increment

Step #31. If increment is elastic after two Newton-Raphson iterations, exit
from the iteration loop:

If AR<55 /Z AE ond m=2, go to Step #35.

Step #32. If m = maximum number of iterations allowed, go to Step #35.

Step #33. If m < maximum number of iterations allowed, go to Step #8.
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AR ~ AR
m

Step #34. 1If ARm > 100 * &° to step #8.

Step #35. The iterative loop is now complete. The state variables at the end

of the subincrement are now given by the values of the quantities
0(t + At), R(t + At), cy(t + At), Q4(t + At), e4(t + At), o, (t + At)
at the updated time increment t + At.

Step #36. Go to Step #1 for next time increment.
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Appendix 16. MARC Input History for Thermomechanical Hysteresis Loop
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Appendix 16. MARC Input History for Thermomechanical Hysteresis Loop (Continued)

jo%) wad

[ X ahiah! O LO0

& moouv = oowm

< GCOOooO < OGO

T et I OO0«

O OOOo W OODOoOOo Ww

[0 1o Lp N DOD a4 6

1S > od * & o wl > e o —
D [ s | Dx LIS B | .
Z <t - o ey ° 2 < - * oI [Ty
e 0 T Eon R I o B K T, o, Ko 0 -

P -t ey - - - o oY .

P

D AN L - ZD e—iNMuL 0
O o o = T o+ o OO.»;&I@D
LM~ =D OOMM~ OOt

~OOOANM TN OO
Jo [ S i

-~
D O~~~ L 0 00

82

3
B4
55
86
87
88

L Ls [} il
SO (SN VeV aaTy] W wnwn w
Z OO0V P el ¥ AN o ol Y V) prd
< OO «I =g~ g g ) < FTTIC T
I D000« I DOoDo«a I OO0« X
O OOoOoo w O DO O OO0oo (8]
DO W N D4 [snlen Row IS )
iad > o s o — [ ® o o N L > . o o [¥g) Lad >
D [ T R | s DX LI R I | s D LI T e DX
< <1 - e e W Z<T - o N 2 - e ol NN Z2«a
R Ry L Fon T e R Ll 2o R kB - =~Q
- - o oY s = 2Z - » oy * -2 - - oY e —2Z
P ANML N 2D ANML Q2D My O 2D
OO » e e T &) OO » o o &L ol OO & & o o &) OO =

DUIMMSO R et OIOMMS OOt OIMMSO e OmM

I3

WOCAONMIT NI~ O~NMITN OO0
N DOMDIINI)IDOMD cded erd ot mt e 4 4
-

L R Ll e R R D e e R L e L R b K L D Ko |

165



Appendix 16. MARC Input History for Thermomechanical Hysteresis Loop (Continued)
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Appendix 16. MARC Input History for Thermomechanical Hysteresis Loop (Continued)
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Appendix 16. MARC Input History for Thermomechanical Hysteresis Loop (Continued’
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Appendix 16. MARC Input History for Thermomechanical Hysteresis Loop (Continued)
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Appendix 16. MARC Input History for Thermomechanical Hysteresis Loop (Continued)
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Appendix 16. MARC Input History for Thermomechanical Hysteresis Loop (Continued)
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Appendix 16. MARC Input History for Thermomechanical Hysteresis Loop (Continued)
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Appendix 16. MARC Input History for Thermomechanical Hysteresis Loop (Continued)
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Appendix 16. MARC Input History for Thermomechanical Hysteresis Loop (Continued)
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Appendix 17. Fortran Listing of Functional Theory in Subroutine HYPELA
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Appendix 17. Fortran Listing of Functional Theory in Subroutine HYPELA (Continued)
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Appendix 17. Fortran Listing of Functional Theory in Subroutine HYPELA (Continued)
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Appendix 17. Fortran Listing of Functional Theory in Subroutine HYPELA (Continued)
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Appendix 17. Fortran Listing of Functional Theory in Subroutine HYPELA (Continued)
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Appendix 17. Fortran Listing of Functional Theory in Subroutine HYPELA (Continued)
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Appendix 17. Fortran Listing of Functional Theory in Subroutine HYPELA (Continued)
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Appendix 17. Fortran Listing of Functional Theory in Subroutine HYPELA (Continued)

INCREMENTS INTO STORAGE ARRAYS FOR NEXT MARC INCREMENT
GURING SOLUTION GF RECYCLE NUMBER®
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